Hospital admission planning to optimize major resources utilization under uncertainty

Conference object, Report English OPEN
Dellaert, N.P. ; Jeunet, J. (2010)
  • Publisher: Technische Universiteit Eindhoven
  • Subject: integer linear programming | [ INFO ] Computer Science [cs] | intensive and medium care resources allocation | tactical plan | operational schedule | operation theatre planning | patient mix

International audience; Admission policies for elective inpatient services mainly result in the management of a single resource: the operating theatre as it is commonly considered as the most critical and expensive resource in a hospital. However, other bottleneck resources may lead to surgery cancellations, such as bed capacity and nursing staff in Intensive Care (IC) units and bed occupancy in wards or medium care (MC) services. Our incentive is therefore to determine a master schedule of a given number of patients that are divided in several homogeneous categories in terms of the utilization of each resource: operating theatre, IC beds, IC nursing hours and MC beds. The objective is to minimize the weighted deviations of the resource use from their targets and probabilistic lengths of stay in each unit (IC and MC) are considered. We use a Mixed Integer Program model to determine the best admission policy. The resulting admission policy is a tactical plan, as it is based upon the expected number of patients with their expected characteristics. On the operational level, this tactical plan must be adapted to account for the actual arriving number of patients in each category. We develop several strategies to build an operational schedule that leansupon the tactical plan more or less closely. The strategies result from the combination of several options to create a feasible operational schedule from the tactical plan: over planning, flexibility in selecting the patient groups to be operated and updating the tactical plan. The strategies were tested on real data from a Thoracic Surgery Centre over a 10-year simulation horizon. The performance was assessed by the average waiting time for patients, the weighted target deviations and some indicators of the plan changes between the tactical plan and the operational schedule.Simulation results show that the best strategies include over planning, a limited flexibility and infrequent updates of the tactical plan.
  • References (11)
    11 references, page 1 of 2

    1. J.M.H. Vissers, I.J.B.F. Adan, and N.P. Dellaert, 2007. Developing a platform for comparison of hospital admission systems: An Illustration. European Journal of Operational Research, 180, 1290-1301.

    2. R. J. Kusters and P.M.A. Groot, 1996. Modelling resource availability in general hospitals. Design and implementation of a decision support model, European Journal of Operational Research, 88, 428-445.

    3. P. Gemmel and R. Van Dierdonck, 1999. Admission scheduling in acute care hospitals: does the practice fit with the theory?. International Journal of Operations & Production Management, 19 (9), 863-878. (now something goes wrong in layout)

    4. V.L. Smith-Daniels, S.B. Schweikhart and D.E. Smith-Daniels, 1988. Capacity management in health care services. Decision Sciences, 19, 898-919.

    5. R.B. Fetter and J.D. Thompson, 1969. A decision model for the design and operation of a progressive patient care hospital. Medical Care, 7 (6), 450-462.

    6. A. Roth and R. van Dierdonck, 1995. Hospital resource planning: concepts, feasibility, and framework. Production and Operations Management, 4 (1), 2-29.

    7. D. Worthington, 1991. Hospital Waiting List Management Models, Journal of the Operational Research Society, 42, 833-843.

    8. J. Bowers and G. Mould, 2002. Concentration and variability of orthopaedic demand, Journal of the Operational Research Society, 53, 203-210.

    9. I.J.B.F. Adan and J.M.H. Vissers, 2002. Patient mix optimisation in hospital admission planning: a case study. Special issue on 'operations management in health care' of the International Journal of Operations and Production Management, 22(4), 445-461.

    10. J.M.H. Vissers, I.J.B.F. Adan and J.A.Bekkers, 2005. Patient mix optimization in cardiothoracic surgery planning: a case study. IMA Journal of Management Mathematics, 16, 281-304.

  • Metrics
    No metrics available
Share - Bookmark