Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles: On integration into the Airspace System

Doctoral thesis English OPEN
Jenie, Y.I.;
(2017)

In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technolo... View more
  • References (110)
    110 references, page 1 of 11

    1 Introduction 1 1.1 Unmanned Aerial Vehicles and the Airspace System . . . . . . . . . . . . 1 1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Current Airspace Incompatibility . . . . . . . . . . . . . . . . . . 4 1.2.2 CD&R System Diversity . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 UAV CD&R System Safety . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 UAV Autonomous CD&R System Inadequacy . . . . . . . . . . . . 7 1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Research Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Methodology and Dissertation Outline . . . . . . . . . . . . . . . . . . . 10

    2 Taxonomy and Architecture of CD&R Approaches 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Inventory of Approaches for UAV CD&R System. . . . . . . . . . . . . . . 16 2.2.1 Types of Airspace Surveillance . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Types of Coordination . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Types of Avoidance Maneuver . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Types of Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Taxonomy of Conflict Detection and Resolution Approaches for UAV . . . . 20 2.3.1 UAV Flight in the Future Integrated Airspace. . . . . . . . . . . . . 21 2.3.2 Combination Process of CD&R Methods . . . . . . . . . . . . . . . 23 2.3.3 Approaches Availability . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 A Multi-layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Generic Approaches Arrangement . . . . . . . . . . . . . . . . . . 26 2.4.2 General Implementation. . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3 Safety Assessment of UAV CD&R System 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Heterogeneous Airspace Model . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 High Density Airspace with Periodic Boundary Condition . . . . . . 34 3.2.2 The Uncertainty of Conflict Detection . . . . . . . . . . . . . . . . 36 3.2.3 The Variation of Conflict Resolution . . . . . . . . . . . . . . . . . 36 3.2.4 Order in the Heterogeneous Airspace . . . . . . . . . . . . . . . . 38 3.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2 NMAC and MAC Frequencies . . . . . . . . . . . . . . . . . . . . 45 3.4.3 Reaching the Target Level of Safety. . . . . . . . . . . . . . . . . . 47 3.4.4 Severity of Intrusion . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    4 Implicitly Coordinated Tactical Maneuver for Avoidance 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Selective Velocity Obstacle Method for UAV Collision Avoidance . . . . . . 54 4.2.1 Original Concept of the Velocity Obstacle Method . . . . . . . . . . 55 4.2.2 Incorporating the Right-of-way Rules . . . . . . . . . . . . . . . . 56 4.2.3 Avoidance Algorithm and the Minimum Avoidance Turning-rate . . 57 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Simulation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    5 Uncoordinated Escape Maneuver for Avoidance 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 The Three-dimensional Velocity Obstacle Method . . . . . . . . . . . . . 71 5.2.1 3DVO method's Velocity Obstacle Cone . . . . . . . . . . . . . . . 73 5.2.2 Handling Maneuvering Obstacles: The Buffer Velocity Set . . . . . . 75 5.2.3 Avoidance Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Strategy for a Three-dimensional Avoidance . . . . . . . . . . . . . . . . 81 5.3.1 Avoidance Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.2 Choosing an Avoidance Plane . . . . . . . . . . . . . . . . . . . . 82 5.3.3 Avoidance Turning Rate . . . . . . . . . . . . . . . . . . . . . . . 84 5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.1 Two Vehicles Converging. . . . . . . . . . . . . . . . . . . . . . . 86 5.4.2 Multiple Heterogeneous Conflicts . . . . . . . . . . . . . . . . . . 90 5.4.3 3DVO method Validation. . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    [22] P. Fiorini and Z. Shiller, Motion Planning in Dynamic Environments Using Velocity Obstacles, The International Journal of Robotics Research 17, 760 (1998), doi: 10.1177/027836499801700706.

    [23] B. Kluge and E. Prassler, Recursive Probabilistic Velocity Obstacles for Reflective Navigation, in Field and Service Robotics, Springer Tracts in Advanced Robotics, Vol. 24, edited by S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun (Springer Berlin Heidelberg, 2006) pp. 71-79, doi: 10.1007/10991459_8.

    [24] J. van der Berg, M. Lin, and D. Manocha, Reciprocal Velocity Obstacles for RealTime Multi-Agent Navigation, in International Conference on Robotics and Automation (IEEE, Pasadena, CA, USA, 2008) doi:10.1109/ROBOT.2008.4543489.

    [25] S. B. J. van Dam, M. Mulder, and M. Van Paassen, Ecological Interface Design of a Tactical Airborne Separation Assistance Tool, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38, 1221 (2008), doi: 10.1109/TSMCA.2008.2001069.

    [26] J. Snape, J. van den Berg, S. Guy, and D. Manocha, The Hybrid Reciprocal Velocity Obstacle, Robotics, IEEE Transactions on 27, 696 (2011), doi: 10.1109/TRO.2011.2120810.

  • Similar Research Results (16)
  • Metrics
    1
    views in OpenAIRE
    0
    views in local repository
    0
    downloads in local repository
Share - Bookmark

  • Download from
    TU Delft Repository via NARCIS (Doctoral thesis, 2017)
  • Cite this publication