publication . Doctoral thesis . 2017

Autonomous Conflict Detection and Resolution for Unmanned Aerial Vehicles: On integration into the Airspace System

Jenie, Y.I.;
Open Access English
  • Published: 23 Jan 2017
  • Country: Netherlands
Abstract
In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technology in materials, sensors, computation, and telemetry. As UAVs are becoming cheaper and more user-friendly, many companies are motivated to incorporate them in their everyday business, such as for delivery services, journalisms, or providing Internet services.All of commercial prospective applications for UAVs, however, can only be achieved once the vehicles are fully integrated into the airspace s...
Subjects
free text keywords: Airspace Management, Airspace Integration, Autonomous Collision Avoidance, Conflict Detection and Resolution, Monte Carlo Simulation, Safety Analysis, Unmanned Aerial Vehicle, Velocity Obstacle Method
Download from
TU Delft Repository
Doctoral thesis . 2017
Provider: NARCIS
110 references, page 1 of 8

1 Introduction 1 1.1 Unmanned Aerial Vehicles and the Airspace System . . . . . . . . . . . . 1 1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Current Airspace Incompatibility . . . . . . . . . . . . . . . . . . 4 1.2.2 CD&R System Diversity . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 UAV CD&R System Safety . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 UAV Autonomous CD&R System Inadequacy . . . . . . . . . . . . 7 1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Research Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Methodology and Dissertation Outline . . . . . . . . . . . . . . . . . . . 10

2 Taxonomy and Architecture of CD&R Approaches 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Inventory of Approaches for UAV CD&R System. . . . . . . . . . . . . . . 16 2.2.1 Types of Airspace Surveillance . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Types of Coordination . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Types of Avoidance Maneuver . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Types of Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Taxonomy of Conflict Detection and Resolution Approaches for UAV . . . . 20 2.3.1 UAV Flight in the Future Integrated Airspace. . . . . . . . . . . . . 21 2.3.2 Combination Process of CD&R Methods . . . . . . . . . . . . . . . 23 2.3.3 Approaches Availability . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 A Multi-layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Generic Approaches Arrangement . . . . . . . . . . . . . . . . . . 26 2.4.2 General Implementation. . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Safety Assessment of UAV CD&R System 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Heterogeneous Airspace Model . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 High Density Airspace with Periodic Boundary Condition . . . . . . 34 3.2.2 The Uncertainty of Conflict Detection . . . . . . . . . . . . . . . . 36 3.2.3 The Variation of Conflict Resolution . . . . . . . . . . . . . . . . . 36 3.2.4 Order in the Heterogeneous Airspace . . . . . . . . . . . . . . . . 38 3.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2 NMAC and MAC Frequencies . . . . . . . . . . . . . . . . . . . . 45 3.4.3 Reaching the Target Level of Safety. . . . . . . . . . . . . . . . . . 47 3.4.4 Severity of Intrusion . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Implicitly Coordinated Tactical Maneuver for Avoidance 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Selective Velocity Obstacle Method for UAV Collision Avoidance . . . . . . 54 4.2.1 Original Concept of the Velocity Obstacle Method . . . . . . . . . . 55 4.2.2 Incorporating the Right-of-way Rules . . . . . . . . . . . . . . . . 56 4.2.3 Avoidance Algorithm and the Minimum Avoidance Turning-rate . . 57 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Simulation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Uncoordinated Escape Maneuver for Avoidance 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 The Three-dimensional Velocity Obstacle Method . . . . . . . . . . . . . 71 5.2.1 3DVO method's Velocity Obstacle Cone . . . . . . . . . . . . . . . 73 5.2.2 Handling Maneuvering Obstacles: The Buffer Velocity Set . . . . . . 75 5.2.3 Avoidance Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Strategy for a Three-dimensional Avoidance . . . . . . . . . . . . . . . . 81 5.3.1 Avoidance Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.2 Choosing an Avoidance Plane . . . . . . . . . . . . . . . . . . . . 82 5.3.3 Avoidance Turning Rate . . . . . . . . . . . . . . . . . . . . . . . 84 5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.1 Two Vehicles Converging. . . . . . . . . . . . . . . . . . . . . . . 86 5.4.2 Multiple Heterogeneous Conflicts . . . . . . . . . . . . . . . . . . 90 5.4.3 3DVO method Validation. . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

[22] P. Fiorini and Z. Shiller, Motion Planning in Dynamic Environments Using Velocity Obstacles, The International Journal of Robotics Research 17, 760 (1998), doi: 10.1177/027836499801700706.

[23] B. Kluge and E. Prassler, Recursive Probabilistic Velocity Obstacles for Reflective Navigation, in Field and Service Robotics, Springer Tracts in Advanced Robotics, Vol. 24, edited by S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun (Springer Berlin Heidelberg, 2006) pp. 71-79, doi: 10.1007/10991459_8. [OpenAIRE]

[24] J. van der Berg, M. Lin, and D. Manocha, Reciprocal Velocity Obstacles for RealTime Multi-Agent Navigation, in International Conference on Robotics and Automation (IEEE, Pasadena, CA, USA, 2008) doi:10.1109/ROBOT.2008.4543489.

[25] S. B. J. van Dam, M. Mulder, and M. Van Paassen, Ecological Interface Design of a Tactical Airborne Separation Assistance Tool, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38, 1221 (2008), doi: 10.1109/TSMCA.2008.2001069.

[26] J. Snape, J. van den Berg, S. Guy, and D. Manocha, The Hybrid Reciprocal Velocity Obstacle, Robotics, IEEE Transactions on 27, 696 (2011), doi: 10.1109/TRO.2011.2120810.

[27] P. G. Reich, Analysis of Long-Range Air Traffic Systems: Separation Standards - I, The Journal of Navigation 50, 436 (1997), doi:10.1017/S0373463300019068.

[28] G. May, A Method for Predicting the Number of Near Mid-Air Collisions in a Defined Airspace, Operational Research Quarterly (1970-1977) 22, 237 (1971), doi:10.2307/3007993.

[29] B. Alexander, Aircraft density and midair collision, Proceedings of the IEEE 58, 377 (1970), doi:10.1109/PROC.1970.7643.

[33] L. F. Winder and J. K. Kuchar, Evaluation of Collision Avoidance Maneuvers for Parallel Approach, AIAA Journal of Guidance, Control, and Dynamics 22, 801 (1999), doi: 10.2514/2.44818. [OpenAIRE]

[34] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, A Probabilistic Approach to Aircraft Conflict Detection, Intelligent Transportation Systems, IEEE Transactions on 1, 199 (2000), doi:10.1109/6979.898224.

110 references, page 1 of 8
Abstract
In the last decade, the commercial values of Unmanned Aerial Vehicles (UAV), defined as devices that are capable of sustainable flights in the atmosphere that do not require to have a human (pilot) on-board, become widely recognized thanks to the advancement of technology in materials, sensors, computation, and telemetry. As UAVs are becoming cheaper and more user-friendly, many companies are motivated to incorporate them in their everyday business, such as for delivery services, journalisms, or providing Internet services.All of commercial prospective applications for UAVs, however, can only be achieved once the vehicles are fully integrated into the airspace s...
Subjects
free text keywords: Airspace Management, Airspace Integration, Autonomous Collision Avoidance, Conflict Detection and Resolution, Monte Carlo Simulation, Safety Analysis, Unmanned Aerial Vehicle, Velocity Obstacle Method
Download from
TU Delft Repository
Doctoral thesis . 2017
Provider: NARCIS
110 references, page 1 of 8

1 Introduction 1 1.1 Unmanned Aerial Vehicles and the Airspace System . . . . . . . . . . . . 1 1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Current Airspace Incompatibility . . . . . . . . . . . . . . . . . . 4 1.2.2 CD&R System Diversity . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 UAV CD&R System Safety . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 UAV Autonomous CD&R System Inadequacy . . . . . . . . . . . . 7 1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Research Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Methodology and Dissertation Outline . . . . . . . . . . . . . . . . . . . 10

2 Taxonomy and Architecture of CD&R Approaches 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Inventory of Approaches for UAV CD&R System. . . . . . . . . . . . . . . 16 2.2.1 Types of Airspace Surveillance . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Types of Coordination . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Types of Avoidance Maneuver . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Types of Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Taxonomy of Conflict Detection and Resolution Approaches for UAV . . . . 20 2.3.1 UAV Flight in the Future Integrated Airspace. . . . . . . . . . . . . 21 2.3.2 Combination Process of CD&R Methods . . . . . . . . . . . . . . . 23 2.3.3 Approaches Availability . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 A Multi-layered Architecture . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Generic Approaches Arrangement . . . . . . . . . . . . . . . . . . 26 2.4.2 General Implementation. . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Safety Assessment of UAV CD&R System 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Heterogeneous Airspace Model . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 High Density Airspace with Periodic Boundary Condition . . . . . . 34 3.2.2 The Uncertainty of Conflict Detection . . . . . . . . . . . . . . . . 36 3.2.3 The Variation of Conflict Resolution . . . . . . . . . . . . . . . . . 36 3.2.4 Order in the Heterogeneous Airspace . . . . . . . . . . . . . . . . 38 3.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.2 NMAC and MAC Frequencies . . . . . . . . . . . . . . . . . . . . 45 3.4.3 Reaching the Target Level of Safety. . . . . . . . . . . . . . . . . . 47 3.4.4 Severity of Intrusion . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Implicitly Coordinated Tactical Maneuver for Avoidance 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Selective Velocity Obstacle Method for UAV Collision Avoidance . . . . . . 54 4.2.1 Original Concept of the Velocity Obstacle Method . . . . . . . . . . 55 4.2.2 Incorporating the Right-of-way Rules . . . . . . . . . . . . . . . . 56 4.2.3 Avoidance Algorithm and the Minimum Avoidance Turning-rate . . 57 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Simulation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Uncoordinated Escape Maneuver for Avoidance 69 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 The Three-dimensional Velocity Obstacle Method . . . . . . . . . . . . . 71 5.2.1 3DVO method's Velocity Obstacle Cone . . . . . . . . . . . . . . . 73 5.2.2 Handling Maneuvering Obstacles: The Buffer Velocity Set . . . . . . 75 5.2.3 Avoidance Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Strategy for a Three-dimensional Avoidance . . . . . . . . . . . . . . . . 81 5.3.1 Avoidance Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.2 Choosing an Avoidance Plane . . . . . . . . . . . . . . . . . . . . 82 5.3.3 Avoidance Turning Rate . . . . . . . . . . . . . . . . . . . . . . . 84 5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.1 Two Vehicles Converging. . . . . . . . . . . . . . . . . . . . . . . 86 5.4.2 Multiple Heterogeneous Conflicts . . . . . . . . . . . . . . . . . . 90 5.4.3 3DVO method Validation. . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

[22] P. Fiorini and Z. Shiller, Motion Planning in Dynamic Environments Using Velocity Obstacles, The International Journal of Robotics Research 17, 760 (1998), doi: 10.1177/027836499801700706.

[23] B. Kluge and E. Prassler, Recursive Probabilistic Velocity Obstacles for Reflective Navigation, in Field and Service Robotics, Springer Tracts in Advanced Robotics, Vol. 24, edited by S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun (Springer Berlin Heidelberg, 2006) pp. 71-79, doi: 10.1007/10991459_8. [OpenAIRE]

[24] J. van der Berg, M. Lin, and D. Manocha, Reciprocal Velocity Obstacles for RealTime Multi-Agent Navigation, in International Conference on Robotics and Automation (IEEE, Pasadena, CA, USA, 2008) doi:10.1109/ROBOT.2008.4543489.

[25] S. B. J. van Dam, M. Mulder, and M. Van Paassen, Ecological Interface Design of a Tactical Airborne Separation Assistance Tool, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38, 1221 (2008), doi: 10.1109/TSMCA.2008.2001069.

[26] J. Snape, J. van den Berg, S. Guy, and D. Manocha, The Hybrid Reciprocal Velocity Obstacle, Robotics, IEEE Transactions on 27, 696 (2011), doi: 10.1109/TRO.2011.2120810.

[27] P. G. Reich, Analysis of Long-Range Air Traffic Systems: Separation Standards - I, The Journal of Navigation 50, 436 (1997), doi:10.1017/S0373463300019068.

[28] G. May, A Method for Predicting the Number of Near Mid-Air Collisions in a Defined Airspace, Operational Research Quarterly (1970-1977) 22, 237 (1971), doi:10.2307/3007993.

[29] B. Alexander, Aircraft density and midair collision, Proceedings of the IEEE 58, 377 (1970), doi:10.1109/PROC.1970.7643.

[33] L. F. Winder and J. K. Kuchar, Evaluation of Collision Avoidance Maneuvers for Parallel Approach, AIAA Journal of Guidance, Control, and Dynamics 22, 801 (1999), doi: 10.2514/2.44818. [OpenAIRE]

[34] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, A Probabilistic Approach to Aircraft Conflict Detection, Intelligent Transportation Systems, IEEE Transactions on 1, 199 (2000), doi:10.1109/6979.898224.

110 references, page 1 of 8
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue