publication . Other literature type . Article . 2013

Semiparametric Bernstein–von Mises for the error standard deviation

Jonge, de, R.; Zanten, van, J.H.;
Open Access English
  • Published: 01 Jan 2013
  • Publisher: The Institute of Mathematical Statistics and the Bernoulli Society
  • Country: Netherlands
Abstract
We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein–von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regression function and efficient, $\sqrt{n}$-consistent estimation of the error standard deviation.
Subjects
arXiv: Statistics::MethodologyStatistics::ComputationStatistics::Theory
free text keywords: Nonparametric regression, Bayesian inference, estimation of error variance, semiparametric Bernstein-von Mises, 62G09, 62C10, 62G20
Related Organizations
20 references, page 1 of 2

De Blasi, P. and Hjort, N. L. (2009). The Bernstein-von Mises theorem in semiparametric competing risks models. J. Statist. Plann. Inference 139 2316-2328. MR2507993 (2010h:62087)

De Jonge, R. and Van Zanten, J. H. (2010). Adaptive nonparametric Bayesian inference using location-scale mixture priors. Ann. Statist. 38 3300- 3320. MR2766853 (2012b:62136) [OpenAIRE]

De Jonge, R. and Van Zanten, J. H. (2012). Adaptive estimation of multivariate functions using conditionally Gaussian tensor-product spline priors. Electron. J. Stat. 6 1984-2001. [OpenAIRE]

Edmunds, D. E. and Triebel, H. (1996). Function spaces, entropy numbers, differential operators. Cambridge Tracts in Mathematics 120. Cambridge University Press, Cambridge. MR1410258 (97h:46045) [OpenAIRE]

Ghosal, S. and Van der Vaart, A. W. (2007). Convergence rates for posterior distributions for noniid observations. Ann. Statist. 35 697-723. [OpenAIRE]

Huang, T.-M. (2004). Convergence rates for posterior distributions and adaptive estimation. Ann. Statist. 32 1556-1593. MR2089134 (2006m:62050) [OpenAIRE]

Li, W. V. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. The Annals of Probability 27 1556-1578.

Lifshits, M. and Simon, T. (2005). Small deviations for fractional stable processes. Ann. Inst. H. Poincar´e Probab. Statist. 41 725-752. MR2144231 (2006d:60081)

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cambridge, Massachusetts.

Rivoirard, V. and Rousseau, J. (2012). Bernstein-Von Mises Theorem for linear functionals of the density. Ann. Statist. to appear. [OpenAIRE]

Schumaker, L. L. (1981). Spline functions: basic theory. John Wiley & Sons Inc., New York. Pure and Applied Mathematics, A Wiley-Interscience Publication. MR606200 (82j:41001)

Shen, X. (2002). Asymptotic normality of semiparametric and nonparametric posterior distributions. J. Amer. Statist. Assoc. 97 222-235. MR1947282 (2003i:62029)

Tokdar, S. A. (2011). Dimension adaptability of Gaussian process models with variable selection and projection. Preprint. [OpenAIRE]

Van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge University Press, Cambridge. MR1652247 (2000c:62003)

Van der Vaart, A. W. and Van Zanten, J. H. (2008a). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 1435-1463. MR2418663 (2009i:62068) [OpenAIRE]

20 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue