Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

Article, Other literature type English OPEN
Angelica Aguilera-Gomez; Margarita Zacharogianni; Marinke M. van Oorschot; Heide Genau; Rianne Grond; Tineke Veenendaal; Kristina S. Sinsimer; Elisabeth A. Gavis; Christian Behrends; Catherine Rabouille;
(2017)
  • Publisher: Elsevier
  • Journal: Cell Reports (issn: 2211-1247)
  • Publisher copyright policies & self-archiving
  • Identifiers: doi: 10.1016/j.celrep.2017.08.054, doi: 10.1016/j.celrep.2017.06.042, pmc: PMC6064189
  • Subject: amino acid starvation | protein translation | SECRETORY PATHWAY | TER SITES | ENDOPLASMIC-RETICULUM | stress response | RNA GRANULES | MAMMALIAN-CELLS | elF2 alpha | phosphorylation | NONREDUNDANT FUNCTIONS | Drosophila S2 cells | protein stabilization | Article | QH301-705.5 | Rasputin | Biochemistry, Genetics and Molecular Biology(all) | DROSOPHILA | Sec16 | arsenite | ER-EXIT SITES | stress granules | TRANSITIONAL ER | PHASE-TRANSITION | Journal Article | Biology (General) | protein transport in the secretory pathway
    • ddc: ddc:610

Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited t... View more
  • References (56)
    56 references, page 1 of 6

    Aguilera-Gomez, A., van Oorschot, M.M., Veenendaal, T., and Rabouille, C. (2016). In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 5, e21475.

    Anderson, P., and Kedersha, N. (2002). Stressful initiations. J. Cell Sci. 115, 3227-3234.

    Anderson, P., and Kedersha, N. (2006). RNA granules. J. Cell Biol. 172, 803-808.

    Anderson, P., and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141-150.

    Aulas, A., Stabile, S., and Vande Velde, C. (2012). Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol. Neurodegener. 7, 54.

    Aulas, A., Fay, M.M., Lyons, S.M., Achorn, C.A., Kedersha, N., Anderson, P., and Ivanov, P. (2017). Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927-937.

    Bhattacharyya, D., and Glick, B.S. (2007). Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol. Biol. Cell 18, 839-849.

    Buchan, J.R., and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941.

    Budnik, A., Heesom, K.J., and Stephens, D.J. (2011). Characterization of human Sec16B: indications of specialized, non-redundant functions. Sci. Rep. 1, 77.

    Carson, J.H., Gao, Y., Tatavarty, V., Levin, M.K., Korza, G., Francone, V.P., Kosturko, L.D., Maggipinto, M.J., and Barbarese, E. (2008). Multiplexed RNA trafficking in oligodendrocytes and neurons. Biochim. Biophys. Acta 1779, 453-458.

  • Related Research Results (1)
  • Metrics
Share - Bookmark