publication . Doctoral thesis . 2007

Functional System Dynamics

Ligterink, N.E.;
Open Access
  • Published: 03 Aug 2007
  • Publisher: Twente University Press (TUP)
  • Country: Netherlands
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.
free text keywords: METIS-241838, IR-57922, Control, System Theory, Dynamics, PDE, EWI-10871, Modelling
Related Organizations
Download from
Universiteit Twente Repository
Doctoral thesis . 2007
Provider: NARCIS
249 references, page 1 of 17

scattered in the literature. The Lopatinski condition [Krantz, 1992, Garding, 1998, Hormander, 1983] arises in many results.

M. J. Ablowitz and P. A. Clarkson. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, 1991. [OpenAIRE]

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications, volume 75 of Applied Mathematical Sciences. Springer, New York, second edition, 1991.

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. Dover, New York, 1965.

J. H. Ahlberg, E. N. Nilson, and J. L. Walsh. The theory of splines and their applications. Academic Press, New York, 1967.

N. I. Akhiezer. The classical moment problem. Oliver and Boyd, Edinburgh, 1965.

G. Allaire, F. Jouve, and A.-M. Toader. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 194:363{393, 2004. [OpenAIRE]

E. Anderson, Z. Bai, C. H. Bishop, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney, and D. C. Sorensen. Lapack users' guide. SIAM, Philadelphia, 1999. [OpenAIRE]

H. M. Antia. Numerical methods for scientists and engineers. Birkhauser, Basel, second edition, 2002.

S. S. Antman and G. Rosenfeld. Global behavior of buckled states of nonlinearly elastic rods. SIAM Review, 20:513{566, 1978.

A. C. Antoulas. Approximation of large-scale dynamical systems. SIAM, Philadephia, 2005. [OpenAIRE]

V. I. Arnold. Ordinary di erential equations. MIT Press, Cambridge (Mass), 1973.

V. I. Arnold. Mathematical methods of classical mechanics. Springer, New York, second edition, 1989.

V. I. Arnold. Lectures on partial di erential equations. Springer, Berlin, 2004.

K. J. Astrom and B. Wittenmark. Adaptive control. Addison-Wesley, Reading (MA), 1989.

249 references, page 1 of 17
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue