## Traveling wave solutions of a highly nonlinear shallow water equation

*Geyer, A.*;

*Quirchmayr, Ronald*;

- Subject:arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems

- References (38)
[2] J. L. Bona, P. E. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 411 (1987), 395{412.

[3] G. Brull, M. Ehrnstrom, A. Geyer and L. Pei, Symmetric solutions of evolutionary partial di erential equations, Nonlinearity, 30 (2017), 3932{3950.

[4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661{1664.

[5] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523{535.

[6] A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117 (2012), C05029.

[7] A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781{789.

[8] A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81, SIAM Philadelphia, 2011.

[9] A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559{568.

[10] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165{186.

[11] A. Constantin and W. Strauss, Stability of peakons, Commun. Pure Appl. Math., 53 (2000), 603{610.

- Metrics No metrics available

- Download from

- Funded by

- Cite this publication