publication . Article . 1993

In-situ positron emission of CO oxidation

van der Swa Wal; van Ra Rutger Santen; KA Vonkeman; G Jonkers;
Open Access English
  • Published: 01 Jan 1993 Journal: Berichte der Bunsen-Gesellschaft : Physical Chemistry, Chemical Physics, volume 97, issue 3, pages 333-339 (issn: 0940-483X, Copyright policy)
  • Country: Netherlands
Abstract
Using a Neuro ECAT positron tomograph the Positron Emission computed Tomography (PET) has been utilized to image the catalytic oxidation of CO by using CO and CO2, labelled with short lived positron emitting nuclides. Studies were performed over highly dispersed ceria/y-alumina supported platinum and rhodium catalysts. With a mathematical model of the reaction kinetics, based on the elementary steps of the catalytic reaction and partially on literature surface science data, the effect of CeOz promotion and the presence of NO were quantified in terms of the number of adsorption sites and adsorption equilibrium constants. Oxygen atoms of CO2 remain much longer in ...
Subjects
free text keywords: General Chemical Engineering, Rhodium, chemistry.chemical_element, chemistry, Inorganic chemistry, Nuclear chemistry, Desorption, Elementary reaction, Catalysis, Platinum, Adsorption, Noble metal, engineering.material, engineering, Catalytic oxidation
Related Organizations
37 references, page 1 of 3

[I] M. E. Phelps, J. C. Mazziotta, and H. R. Schelbert, Positron Emission computed Tomography and Autoradiography, Raven Press, New York 1986.

[2] S. Webb, Medical Science Series, The physics of medical imaging, Adam Hilger, Bristol 1980.

[3] Experiments have been carried out at the Institute for Nuclear Sciences at the State University of Gent, Belgium, see: Annual Report 1987, p. 99, Rijksuniversiteit Gent, Lab. for Analytical Chemistry, Ed. R. Darns, 1988.

[4] M. E. Phelps, E. J. Hoffmann, S. C. Huang, and D. E. KuhI, J. Nucl. Med. 19 (6), 635 (1978).

[5] C. W. Williams, M. C. Crabtree, M. R. Burke, R. M. Keyser, S. G. Burgiss, E. 1. Hoffman, and M. E. Phelps, IEEE Trans. Nucl. Sci. NS-28, 1736 (1981).

[6] 1. G. Verwer, 1. G. Blom, R. M. Furzeland, and P. A. Regeling: A moving grid method for a one-dimensional PDES based on the Methods of Line in 1. E. Flaherty, P. 1. Paslow, M. A. Schephard, 1. D. Vaselakes: Adaptive methods for partial differential equations, 160 (1989).

[7] K. C. Taylor, in: Catalysis, Sience and Technology. 1. R. Anderson, M. Boudart (eds.) 5 (2), 119 (1984).

[8] M. P. Walsh, Plat. Met. Rev. 30 (3), 106 (1986).

[9] 1. T. Kummer, 1. Phys. Chern. 90, 4747 (1986).

[10] B. Engler, E. Koberstein, and P. Schubert, Appl. Catal. 48, 71 (1989).

[11] H. C. Yao and Y. P. Y. Yao, 1. Catal. 86, 254 (1984).

[12] S. H. Ho and 1. E. Carpenter, 1. CataL.98, 178 (1986).

[13] B. Harrison, A F. Diwell, and C. Hallett, Plas. Met. Rev. 32 (2), 73 (1988).

[14] M. R. Prairie, B. K. Cho, S. H. Oh, E. 1. Shinonskis, and 1. E. Bailey, Ind. Eng. Chern. Res. 27, 1396 (1988).

[15] Y. E. Li, D. Boecker, and R. D. Gonzales, 1. Catal. 110, 319 (1988).

37 references, page 1 of 3
Any information missing or wrong?Report an Issue