publication . Doctoral thesis . 2012

Structured Piezoelectric Composites: Materials and Applications

Ende, D.A. van den;
Open Access English
  • Published: 28 Jun 2012
  • Country: Netherlands
Abstract
The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits their practical application to certain specific fields. Piezoelectric composites, which contain an active piezoelectric (ceramic) phase in a robust polymer matrix, can potentially have better properties both thermally and mechanically than the present single-phase piezomaterials, and yet exhibit sufficient piezoelectricity. The two main objectives of this thesis were t...
Subjects
free text keywords: Piezoelectric, Composites, Dielectrophoresis, Connectivity, Electric field structuring, Sensors, Energy harvesting, Adhesion, Friction, Electronics, High Tech Systems & Materials, Industrial Innovation, Mechatronics, Mechanics & Materials, HOL - Holst, TS - Technical Sciences
Download fromView all 2 versions
TU Delft Repository
Doctoral thesis . 2012
Provider: NARCIS
188 references, page 1 of 13

1 Introduction 1 1.1 Introduction to piezoelectric materials . . . . . . . . . . . . . . . . 1 1.2 Piezoelectric Composites . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope and outline of this thesis . . . . . . . . . . . . . . . . . . . . 5

2 Manufacturing and optimisation of high temperature 0-3 composites 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 PZT-LCT 0-3 composite properties . . . . . . . . . . . . . . . . . . 9 2.3.1 Dielectric and piezoelectric properties of 0-3 composites . . 9 2.3.2 Temperature stability of PZT-LCT 0-3 composites . . . . . 12 2.4 Optimisation 0-3 composite piezoelectric properties by calcination of the PZT powder . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Improving d33 and g33 properties of 0-3 composites by dielectrophoresis 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Dielectrophoretic processing of particle lled composites . . . . . . 36 4.2.1 Dielectrophoretic processing . . . . . . . . . . . . . . . . . . 36 4.2.2 Modelling of piezoelectric properties . . . . . . . . . . . . . 37 4.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.1 Processing parameters . . . . . . . . . . . . . . . . . . . . . 43 4.4.2 Volume fraction of PZT . . . . . . . . . . . . . . . . . . . . 45 4.4.3 Patterned Electrodes . . . . . . . . . . . . . . . . . . . . . . 47 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.1 Patterned Electrodes . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 High Field Properties of Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles 87 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 Electric eld in composites with high aspect ratio piezoelectric inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.1 Electric eld distributions in the composites . . . . . . . . . 91 6.5.2 High eld properties of PZT-PU composites . . . . . . . . . 92 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

van der Zwaag Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions. J. Appl. Phys. 111, 124107 (2012) D.A. van den Ende, W.A. Groen, S. van der Zwaag Robust piezoelectric composites for energy harvesting in high strain environments. accepted for publication in J. Intel. Mater. Syst. Struct. - (DOI: 10.1177/ 1045389X12462646) D A van den Ende, H J van de Wiel, W A Groen, S van der Zwaag Direct strain energy harvesting in automobile tires using piezoelectric PZTpolymer composites Smart Mater. Struct. 21 015011 (2012) D.A. van den Ende, W.A. Groen, Piezoelectric Structure International Patent Application WO2012087118 (2012) I. Babu., D.A. Van Den Ende, G. De With, Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites, J. Phys. D 43, 425402 (2010) D.A. van den Ende, W.A. Groen, S. van der Zwaag, Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors, Sens.

Actuators A: Phys 163 pp25-31 (2010) D.A. van den Ende, B.F. Bory, W.A. Groen, S. van der Zwaag, Improving d33 and g33 properties of 0-3 piezoelectric composites by Dielectrophoresis, J. Appl.

Phys. 107, 024107 (2010) 2009 D. Irimia, D. Dobrikov, R. Kortekaas, H. Voet, D.A. van den Ende, W.A.

Groen, and M.H.M. Janssen, A short pulse (7 s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams, Rev. Sci.

Instr. 80, 113303 (2009) D.A. van den Ende, B. Bos, W.A. Groen, L.J.M.G. Dortmans, Lifetime of piezoceramic multilayer actuators: Interplay of material properties and actuator design, J. Electroceram. 22 (1-3), pp. 163-170 (2009) D.A. van den Ende, B. Bos, W.A. Groen, Non-linear electromechanical behaviour of piezoelectric bimorph actuators: In uence on performance and lifetime, J. Electroceram. 22 (1-3), pp. 185-191 (2009) D.A. van den Ende, W.A. Groen Method for manufacturing a mainly lm shaped piezoelectric element, European Patent Appplication EP09163272 (2009) H. Suy, P. Steeneken, A. Boersma, T. Panken, D.A. van den Ende, Microelectromechanical switch and method of manufacturing such a micro- electromechanical switch, Netherlands Patent NL2003681 (2009) 2007 D. A. van den Ende P. de Almeida, S. van der Zwaag, Piezoelectric and mechanical properties of novel composites of PZT and a liquid crystalline thermosetting resin, J. Mater. Sci. 42, pp. 64176425 (2007) D.A. van den Ende, S. van der Zwaag, Piezo-elektrisch composietmateriaal creert bijzondere sensoreigenschappen, De Constructeur, March 2007, pp. 42-44 (in Dutch, Non-peer reviewed) D.A. van den Ende, P. de Almeida, S. van der Zwaag, T.J. Dingemans,Load Sensor, International patent application WO2007073184 (2007)

[1] P. Curie and J. Curie, Compt. Rend., 1880, 91, 294{295.

[2] J. Waanders, Piezoelectric Ceramics Properties and Application, Philips Components, Eindhoven, 1991.

[3] B. Ja e, W. Cook and H. Ja e, Piezoelectric ceramics, Academic Press, London ; New York :, 1971.

[4] S. Trolier-McKinstry, Crystal chemistry of piezoelectric materials, Chapter 3 in: A. Safari, Akdogan EK, eds. Piezoelectric and Acoustic Materials for Transducer Applications, Springer, New York, 2008. [OpenAIRE]

[5] D. Damjanovic, P. Muralt and N. Setter, IEEE Sensors Journal, 2001, 1, 191.

[6] R. C. Turner, P. A. Fuierer, R. E. Newnham and T. R. Shrout, Appl. Acoustics, 1994, 41, 299{324.

188 references, page 1 of 13
Abstract
The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits their practical application to certain specific fields. Piezoelectric composites, which contain an active piezoelectric (ceramic) phase in a robust polymer matrix, can potentially have better properties both thermally and mechanically than the present single-phase piezomaterials, and yet exhibit sufficient piezoelectricity. The two main objectives of this thesis were t...
Subjects
free text keywords: Piezoelectric, Composites, Dielectrophoresis, Connectivity, Electric field structuring, Sensors, Energy harvesting, Adhesion, Friction, Electronics, High Tech Systems & Materials, Industrial Innovation, Mechatronics, Mechanics & Materials, HOL - Holst, TS - Technical Sciences
Download fromView all 2 versions
TU Delft Repository
Doctoral thesis . 2012
Provider: NARCIS
188 references, page 1 of 13

1 Introduction 1 1.1 Introduction to piezoelectric materials . . . . . . . . . . . . . . . . 1 1.2 Piezoelectric Composites . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope and outline of this thesis . . . . . . . . . . . . . . . . . . . . 5

2 Manufacturing and optimisation of high temperature 0-3 composites 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 PZT-LCT 0-3 composite properties . . . . . . . . . . . . . . . . . . 9 2.3.1 Dielectric and piezoelectric properties of 0-3 composites . . 9 2.3.2 Temperature stability of PZT-LCT 0-3 composites . . . . . 12 2.4 Optimisation 0-3 composite piezoelectric properties by calcination of the PZT powder . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Improving d33 and g33 properties of 0-3 composites by dielectrophoresis 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Dielectrophoretic processing of particle lled composites . . . . . . 36 4.2.1 Dielectrophoretic processing . . . . . . . . . . . . . . . . . . 36 4.2.2 Modelling of piezoelectric properties . . . . . . . . . . . . . 37 4.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.1 Processing parameters . . . . . . . . . . . . . . . . . . . . . 43 4.4.2 Volume fraction of PZT . . . . . . . . . . . . . . . . . . . . 45 4.4.3 Patterned Electrodes . . . . . . . . . . . . . . . . . . . . . . 47 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.1 Patterned Electrodes . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 High Field Properties of Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles 87 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 Electric eld in composites with high aspect ratio piezoelectric inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.1 Electric eld distributions in the composites . . . . . . . . . 91 6.5.2 High eld properties of PZT-PU composites . . . . . . . . . 92 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

van der Zwaag Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions. J. Appl. Phys. 111, 124107 (2012) D.A. van den Ende, W.A. Groen, S. van der Zwaag Robust piezoelectric composites for energy harvesting in high strain environments. accepted for publication in J. Intel. Mater. Syst. Struct. - (DOI: 10.1177/ 1045389X12462646) D A van den Ende, H J van de Wiel, W A Groen, S van der Zwaag Direct strain energy harvesting in automobile tires using piezoelectric PZTpolymer composites Smart Mater. Struct. 21 015011 (2012) D.A. van den Ende, W.A. Groen, Piezoelectric Structure International Patent Application WO2012087118 (2012) I. Babu., D.A. Van Den Ende, G. De With, Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites, J. Phys. D 43, 425402 (2010) D.A. van den Ende, W.A. Groen, S. van der Zwaag, Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors, Sens.

Actuators A: Phys 163 pp25-31 (2010) D.A. van den Ende, B.F. Bory, W.A. Groen, S. van der Zwaag, Improving d33 and g33 properties of 0-3 piezoelectric composites by Dielectrophoresis, J. Appl.

Phys. 107, 024107 (2010) 2009 D. Irimia, D. Dobrikov, R. Kortekaas, H. Voet, D.A. van den Ende, W.A.

Groen, and M.H.M. Janssen, A short pulse (7 s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams, Rev. Sci.

Instr. 80, 113303 (2009) D.A. van den Ende, B. Bos, W.A. Groen, L.J.M.G. Dortmans, Lifetime of piezoceramic multilayer actuators: Interplay of material properties and actuator design, J. Electroceram. 22 (1-3), pp. 163-170 (2009) D.A. van den Ende, B. Bos, W.A. Groen, Non-linear electromechanical behaviour of piezoelectric bimorph actuators: In uence on performance and lifetime, J. Electroceram. 22 (1-3), pp. 185-191 (2009) D.A. van den Ende, W.A. Groen Method for manufacturing a mainly lm shaped piezoelectric element, European Patent Appplication EP09163272 (2009) H. Suy, P. Steeneken, A. Boersma, T. Panken, D.A. van den Ende, Microelectromechanical switch and method of manufacturing such a micro- electromechanical switch, Netherlands Patent NL2003681 (2009) 2007 D. A. van den Ende P. de Almeida, S. van der Zwaag, Piezoelectric and mechanical properties of novel composites of PZT and a liquid crystalline thermosetting resin, J. Mater. Sci. 42, pp. 64176425 (2007) D.A. van den Ende, S. van der Zwaag, Piezo-elektrisch composietmateriaal creert bijzondere sensoreigenschappen, De Constructeur, March 2007, pp. 42-44 (in Dutch, Non-peer reviewed) D.A. van den Ende, P. de Almeida, S. van der Zwaag, T.J. Dingemans,Load Sensor, International patent application WO2007073184 (2007)

[1] P. Curie and J. Curie, Compt. Rend., 1880, 91, 294{295.

[2] J. Waanders, Piezoelectric Ceramics Properties and Application, Philips Components, Eindhoven, 1991.

[3] B. Ja e, W. Cook and H. Ja e, Piezoelectric ceramics, Academic Press, London ; New York :, 1971.

[4] S. Trolier-McKinstry, Crystal chemistry of piezoelectric materials, Chapter 3 in: A. Safari, Akdogan EK, eds. Piezoelectric and Acoustic Materials for Transducer Applications, Springer, New York, 2008. [OpenAIRE]

[5] D. Damjanovic, P. Muralt and N. Setter, IEEE Sensors Journal, 2001, 1, 191.

[6] R. C. Turner, P. A. Fuierer, R. E. Newnham and T. R. Shrout, Appl. Acoustics, 1994, 41, 299{324.

188 references, page 1 of 13
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Doctoral thesis . 2012

Structured Piezoelectric Composites: Materials and Applications

Ende, D.A. van den;