publication . Doctoral thesis . Other literature type . 2014

New concepts for organic Rankine cycle power systems

Casati, E.I.M.;
Open Access English
  • Published: 29 Sep 2014
  • Publisher: Delft University of Technology
Abstract
Energy provision is one of the major challenges for the Human Society, and it is increasingly clear that the current production/consumption model is not sustainable. The envisaged energy system is smarter, more decentralised and integrated. Energy conversion systems based on the organic Rankine thermodynamic cycle (ORC) have the potential to play a major role in this framework, being one of the most proven solutions for the exploitation of external thermal sources in the power-output range from, say, few kWe, up to tens of MWe. In ORC power converters, a phase-changing organic compound is adopted as the evolving fluid which, following the working principle defin...
Subjects
free text keywords: ORC, organic fluids, energy systems
16 references, page 1 of 2

1 Introduction 1 1.1 Energy Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 ORC Power Systems: from the Concept to Current Applications and an Outlook to the Future 11 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Technical options . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Energy conversion applications . . . . . . . . . . . . . . 32 2.4 Future scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 Heat Recovery from Automotive Engines . . . . . . . . . 39 2.4.2 Domestic CHP . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.3 Ocean Thermal Energy Conversion - OTEC . . . . . . . . 41 2.4.4 Concentrated Solar Power - CSP . . . . . . . . . . . . . . 42 2.4.5 Other applications . . . . . . . . . . . . . . . . . . . . . 42 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Centrifugal Turbines for ORC Applications 57 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Preliminary Design Method . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Mean-line Design Tool for ORC Turbines . . . . . . . . . 60 3.2.2 Optimization Procedure . . . . . . . . . . . . . . . . . . 61

5 Design Methodology for Flexible Energy Conversion Systems Accounting for Dynamic Performance 121 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2.1 Multi-Objective Design Optimization . . . . . . . . . . . 123 5.2.2 Assessment of Dynamic Performance . . . . . . . . . . . 124 5.3 Case of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.4.1 Preliminary ORC Power Plant Design . . . . . . . . . . . 126 5.4.2 Dynamic Modeling . . . . . . . . . . . . . . . . . . . . . 129 5.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.4.4 The DYNDES Tool . . . . . . . . . . . . . . . . . . . . . 134 5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 139 5.5.1 Multi-objective Design Optimization . . . . . . . . . . . 139 5.5.2 Assessment of Dynamic Performance . . . . . . . . . . . 140 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Design of CSP Plants with Optimally Operated Thermal Storage 149 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.2 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3 Operation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.3.1 Reference Operation Strategy . . . . . . . . . . . . . . . 156 6.3.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . 156 6.4 Computational Infrastructure . . . . . . . . . . . . . . . . . . . . 157 6.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 157 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 163 A.1 Solar Fields Design . . . . . . . . . . . . . . . . . . . . . . . . . 163 A.2 Financial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 166 A.3 Modelica and Optimica listings . . . . . . . . . . . . . . . . . . . 168 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 sor operating with supercritical CO2. Journal of Engineering for Gas Turbines and PowerTransactions of the ASME, 134:122301, December 2012.

[82] M. S. Cramer and L. M. Best. Steady, isentropic flows of dense gases. Phys. Fluids A, 3(1):219-226, 1991.

[83] L. D. Landau and E. M. Lifshitz. Course of theoretical physics, fluid mechanics, volume 6. Pergamon Press, Oxford, 1959.

[84] R. Stryjek and J. H. Vera. PRSV: An improved Peng-Robinson equation of state for pure compounds and mixtures. Canadian Journal of Chemical Engineering, 64(2):323-333, 1986.

[85] P Proust and J H Vera. PRSV: The Stryjek-Vera modification of the Peng-Robinson equation of state. Parameters for other pure compounds of industrial interest. The Canadian Journal of Chemical Engineering, 67(1):170-173, 1989.

[86] D. Y. Peng and D. B. Robinson. A new two-constant equation of state. Ind. Eng. Chem. Fundam., 15(1):59-64, 1976.

[87] G. Soave. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 27:1197-1203, 1972.

[88] P. Coutsikos, N.S. Kalospiros, and D.P. Tassios. Capabilities and limitations of the WongSandler mixing rules. Fluid Phase Equilibria, 108(1-2):59-78, 1995.

[89] H. Renon and J. M. Prausnitz. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14(1):135-144, 1968.

[90] P. Ghosh and T. Taraphdar. Prediction of vapor-liquid equilibria of binary systems using PRSV equation of state and Wong-Sandler mixing rules. Chemical Engineering Journal, 70(1):15-24, 1998.

[91] H. B. Callen. Thermodynamics and an introduction to thermostatistics. Wiley, 2nd edition, 1985. [OpenAIRE]

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Doctoral thesis . Other literature type . 2014

New concepts for organic Rankine cycle power systems

Casati, E.I.M.;