publication . Other literature type . Article . 2013

Immobilised enzymes in biorenewables production

Elinor L. Scott; Maurice C. R. Franssen; Han Zuilhof; Han Zuilhof; Peter Steunenberg; Johan P.M. Sanders;
Open Access
  • Published: 01 Jan 2013
  • Publisher: Royal Society of Chemistry (RSC)
  • Country: Netherlands
Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this...
free text keywords: candida-rugosa lipase, response-surface methodology, nitrogen-containing chemicals, packed-bed reactor, arthrobacter-nicotianae cells, licheniformis alpha-amylase, oryzae beta-galactosidase, chlorella-vulgaris esp-31, biodiesel fuel production, de-novo tr, General Chemistry, Biochemical engineering, Rapid expansion, Reuse, Lignin, chemistry.chemical_compound, chemistry, Raw material, Industrial scale, Food industry, business.industry, business, Organic chemistry
283 references, page 1 of 19

1 A. Raschka and M. Carus, Stoffliche Nutzung von Biomasse, Basisdaten fur Deutschland, Europa und die Welt, Nova Institut, Hurth, 2012, Forderkernzeichen 371093109.

2 C. O. Tuck, E. P´erez, I. T. Horv´ath, R. A. Sheldon and M. Poliakoff, Science, 2012, 337, 695-699.

3 J. P. M. Sanders, E. L. Scott, R. A. Weusthuis and H. Mooibroek, Macromol. Biosci., 2007, 7, 105-117.

4 J. P. M. Sanders, J. H. Clark, G. J. Harmsen, H. J. Heeres, J. J. Heijnen, S. R. A. Kersten, W. P. M. Swaaij and J. A. Moulijn, Chem. Eng. Process., 2012, 51, 117-136.

5 M. Kobayashi, T. Nagasawa and H. Yamada, Trends Biotechnol., 1992, 10, 402-408.

6 T. M. Lammens, S. Gangarapu, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders, Biofuels, Bioprod. Biorefin., 2012, 6, 177-187.

7 P. M. Ko¨nst, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders, Green Chem., 2011, 3, 1167-1174.

8 Y. Teng, E. L. Scott, A. N. T. van Zeeland and J. P. M. Sanders, Green Chem., 2011, 13, 624-630.

9 P. M. K¨onst, P. M. C. C. D. Turras, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders, Adv. Synth. Catal., 2010, 352, 1493-1502.

10 M. J. Liszka, M. E. Clark, E. Schneider and D. S. Clark, Annu. Rev. Chem. Biomol. Eng., 2012, 3, 77-102.

11 W. Liu and P. Wang, Biotechnol. Adv., 2007, 25, 369-384.

12 P. M. K¨onst, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders, Green Chem., 2009, 11, 1646-1652.

13 I. Chibata, Pure Appl. Chem., 1978, 50, 667-675.

14 O. R. Zaborsky, Immobilized Enzymes, CRC Press, Cleveland, Ohio, 1973.

15 G. P. Royer, Immobilized Enzymes, Antigens, Antibodies, and Peptides, Marcel Dekker, New York, 1975, vol. 1.

283 references, page 1 of 19
Any information missing or wrong?Report an Issue