publication . Other literature type . Doctoral thesis . 2018

Short circuit : How brain connectivity and disconnectivity relate to brain function

Langen, Carolyn;
Open Access
  • Published: 18 Apr 2018
  • Publisher: Unpublished
  • Country: Netherlands
Abstract
markdownabstractThe brain is like a super computer: it is a collection of interconnected computational units which work together to enable both basic functions, such as regulation of breathing, as well as higher functions, such as cognition, thought and emotion. The computational units, or regions, are located in the grey matter (i.e. the cortical surface and in the subcortex), whereas the connections between them, or tracts, are found in the white matter. The development and maintenance of both grey and white matter is essential to brain function. When either tissue type becomes compromised, so too does function. Brain connectivity can non-invasively be derived...
Subjects
free text keywords: brain, structural connectivity, functional connectivity, connectome, disconnectome, image analysis, ageing, development, visualization, white matter lesion, pathology, heritability, function, cognition, magnetic resonance imaging, resting state fMRI, diffusion tensor imaging, neuroimaging
Related Organizations
Communities
Neuroinformatics
Download fromView all 3 versions
ResearchGate
Other literature type . 2018
Provider: Datacite
18 references, page 1 of 2

[202] S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. M. van Zijl, and S. Mori. Fiber tractbased atlas of human white matter anatomy. Radiology, 230(1):77-87, jan 2004.

[203] R. Wang, T. Benner, A. Sorensen, and V. Wedeen. Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Proc. Intl. Soc. Mag. Reson. Med., 15, 2007.

[204] C.-Y. Wee, P.-T. Yap, D. Zhang, K. Denny, J. N. Browndyke, G. G. Potter, K. A. WelshBohmer, L. Wang, and D. Shen. Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3):2045-56, feb 2012.

[205] K. A. Welsh, N. Butters, R. C. Mohs, D. Beekly, S. Edland, G. Fillenbaum, and A. Heyman. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology, 44(4):609-614, 1994.

[206] T. White, S. Ehrlich, B.-c. Ho, D. S. Manoach, A. Caprihan, S. C. Schulz, N. C. Andreasen, R. L. Gollub, V. D. Calhoun, and V. A. Magnotta. Spatial characteristics of white matter abnormalities in schizophrenia. Schizophrenia bulletin, 39:1077-86, 2013.

[207] T. White, H. El Marroun, I. Nijs, M. Schmidt, A. van der Lugt, P. A. Wielopolki, V. W. V. Jaddoe, A. Hofman, G. P. Krestin, H. Tiemeier, and F. C. Verhulst. Pediatric populationbased neuroimaging and the Generation R Study: the intersection of developmental neuroscience and epidemiology. European journal of epidemiology, 28(1):99-111, jan 2013.

[208] T. White, C. Langen, M. Schmidt, M. Hough, and A. James. Comparative neuropsychiatry: white matter abnormalities in children and adolescents with schizophrenia, bipolar affective disorder, and obsessive-compulsive disorder. European psychiatry : the journal of the Association of European Psychiatrists, 30(2):205-213, feb 2015.

[209] T. White, R. Muetzel, M. Schmidt, S. J. E. Langeslag, V. Jaddoe, A. Hofman, V. D. Calhoun, F. C. Verhulst, and H. Tiemeier. Time of acquisition and network stability in pediatric restingstate functional magnetic resonance imaging. Brain connectivity, 4(6):417-27, 2014.

[210] T. White, D. O'Leary, V. Magnotta, S. Arndt, M. Flaum, and N. C. Andreasen. Anatomic

[213] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A. Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard, and P. M. Visscher. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7):565-569, jul 2010.

[214] D. Yekutieli and Y. Benjamini. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4):1165-1188, aug 2001. [OpenAIRE]

[215] B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. J. R. J. R. Polimeni, B. Fischl, H. Liu, R. L. Buckner, B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. J. R. J. R. Polimeni, B. Fischl, H. Liu, R. L. Buckner, L. Zollei, B. T. Thomas Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. J. R. J. R. Polimeni, B. Fischl, H. Liu, and R. L. Buckner. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology, 106(3):1125-1165, 2011. [OpenAIRE]

[216] A. Zalesky, A. Fornito, and E. T. Bullmore. Network-based statistic: Identifying differences in brain networks. NeuroImage, 53(4):1197-1207, 2010. [OpenAIRE]

[217] A. Zalesky, A. Fornito, I. H. Harding, L. Cocchi, M. Yücel, C. Pantelis, and E. T. Bullmore. Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 50(3):970-983, 2010.

[218] J. Zhou, E. D. Gennatas, J. H. Kramer, B. L. Miller, and W. W. Seeley. Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome. Neuron, 73(6):1216- 1227, 2012. [OpenAIRE]

18 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue