Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Брестского г...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

METHODOLOGY FOR FORECASTING THE NEED FOR PERSONNEL FOR CONSTRUCTION: THE BASICS OF FORMATION

METHODOLOGY FOR FORECASTING THE NEED FOR PERSONNEL FOR CONSTRUCTION: THE BASICS OF FORMATION

Abstract

This article discusses a variety of approaches and practices for the application of methods for forecasting the need of the economy for qualified personnel. The relevance of this topic is due to the need for constant updating and adaptation of personnel in a dynamically developing labor market and changing technological processes. In the modern world, the importance of highly qualified specialists with unique knowledge and skills is becoming more and more obvious. Modern technologies require specialized knowledge from specialists, which increases the demand for trained personnel. Thus, the process of forecasting human resources needs becomes an important mechanism for reducing the imbalance in the labor market. A comparative analysis of various approaches to forecasting the need for personnel has been carried out, which allows us to identify the strengths and weaknesses of each of the methods. As a result of the analysis, the conclusion is made about the advantages of the combined forecasting method, which integrates qualitative and quantitative aspects. This method significantly expands the possibilities of analyzing investment projects planned for implementation, and also allows for a more accurate assessment of the characteristics of workers needed by the construction complex of the Republic of Belarus. An algorithm for predicting the need for personnel for the construction industry using this combined approach is proposed. The algorithm takes into account both current trends in the labor market and projected changes in the economy. This makes it maximally adapted to the needs of the construction complex. The proposed approach can serve as a basis for the development of effective HR management strategies, which in turn will contribute to improving the competitiveness and sustainability of the construction sector in the country. Such methodologies are of great importance not only for Belarus, but also for other countries with similar economic conditions. В данной статье рассматриваются разнообразные подходы и практики применения методов прогнозирования потребности экономики в квалифицированных кадрах. Актуальность данной темы обусловлена необходимостью постоянного обновления и адаптации кадрового состава в условиях динамично развивающегося рынка труда и изменяющихся технологических процессов. В современном мире важность высококвалифицированных специалистов, обладающих уникальными знаниями и навыками, становится все более очевидной. Современные технологии требуют от специалистов специализированных знаний, что увеличивает спрос на подготовленных кадров. Таким образом, процесс прогнозирования потребностей в кадрах становится важным механизмом для сокращения дисбаланса на рынке труда. Проведен сравнительный анализ различных подходов к прогнозированию потребности в кадрах, что позволяет выявить сильные и слабые стороны каждой из методик. В результате анализа сделан вывод о преимуществах комбинированного метода прогнозирования, который интегрирует качественные и количественные аспекты. Этот метод существенно расширяет возможности анализа инвестиционных проектов, планируемых к реализации, а также позволяет более точно оценивать характеристики работников, необходимых строительному комплексу Республики Беларусь. Предложен алгоритм прогнозирования потребности в кадрах для строительной отрасли с использованием указанного комбинированного подхода. Алгоритм учитывает как текущие тенденции на рынке труда, так и прогнозируемые изменения в экономике. Это делает его максимально адаптированным к запросам строительного комплекса. Предложенный подход может служить основой для разработки эффективных стратегий управления кадрами, что в свою очередь будет способствовать повышению конкурентоспособности и устойчивости строительного сектора в стране. Подобные методологии имеют большое значение не только для Беларуси, но и для других стран с аналогичными экономическими условиями.

Keywords

additional need for personnel, forecasting methods, методы прогнозирования, потребность в кадрах, дополнительная потребность в кадрах, the need for personnel

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid