publication . Part of book or chapter of book . 2010

Carbon Nanotube Supercapacitors

Wen Lu; Liming Dai;
Open Access
  • Published: 01 Mar 2010
  • Publisher: InTech
Supercapacitors (aka, electrochemical capacitors or ultracapacitors) are electrochemical energy storage devices that combine the high energy-storage-capability of conventional batteries with the high power-delivery-capability of conventional capacitors (Burke, 2000; Conway, 1999). Able to achieve higher power and longer cycle life than batteries, supercapacitors have been developed to provide power pulses for a wide range of applications including electric transportation technology (e.g., hybrid electric vehicles (HEVs) and plug-in HEVs), electric utility industry (e.g., emergency backup power and grid system stability improvement), consumer electronics (e.g., l...
Persistent Identifiers
free text keywords: Capacitor, law.invention, law, Supercapacitor, Computer science, Backup, Energy storage, Pager, business.product_category, business, Electric utility, Electronics, Automotive engineering, Regenerative brake
Download fromView all 2 versions
Part of book or chapter of book
Provider: UnpayWall
Part of book or chapter of book . 2010
Provider: InTech
Part of book or chapter of book . 2010
Provider: Crossref
106 references, page 1 of 8

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Potential (V)

Addoun A., Dentzer J. & Ehrburger P. (2002). Porosity of carbons obtained by chemical activation: effect of the nature of the alkaline carbonates. Carbon; 40 (7), 1140-1143. [OpenAIRE]

Abrizzini, C.; Mastragostino, M.; Meneghello, L. & Paraventi, R. (1996). Electronically conducting polymers and activated carbon: Electrode materials in supercapacitor technology. Adv. Mater., 8 (4), 331-334.

Amatucci, G.G.; Badway, F.; Pasquier, A.D. & Zheng, T. (2001). An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc., 148 (8), A930-A939. [OpenAIRE]

An, K.H.; Jeon, K.K.; Heo, J.K.; Lim, S.C.; Bae, D.J. & Lee, Y.H. (2002). High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole. J. Electrochem. Soc., 149 (8), A1058-A1062. [OpenAIRE]

An, K.H.; Kim, W.S., Park, Y.S.; Moon, J.-M.; Bae, D.J.; Lim, S.C.; Lee, Y.S. & Lee, Y.H. (2001). Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Funct. Mater., 11 (5). 387-392.

Barisci, N.J.; Wallace, G.G.; MacFarlane, D.R. & Baughman, R.H. (2004). Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun., 6 (1), 22-27.

Baughman, R.H.; Zakhidov, A.A. & de Heer, W.A. (2002). Carbon Nanotubes--the Route Toward Applications. Science, 297 (5582), 787-792.

Bélanger, D.; Brousse, T. & Long, J.W. (2008). Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. Electrochem. Soc. Interf., 17 (1), 49-52.

Benmoussa, M.; Ibnouelghazi, E.; Bennouna, A. & Ameziane, E. L. (1995). Structural, electrical and optical properties of sputtered vanadium pentoxide thin films. Thin Solid Films, 265 (1-2), 22-28. [OpenAIRE]

Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. J. Power Sources, 91 (1), 37-50.

Burke A. & Arulepp M. (2001). Recent Developments in Carbon-based Electrochemcial Capacitors: Status of the Technology and Future Prospects, Electrochemical Society Proceedings, 2001-21, pp.576.

Buzzeo, M.C.; Evans, R.G. & Compton, R.G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry - A Review. ChemPhysChem, 5 (8), 1106- 1120.

Che, G.; Lakshmi, B.B.; Fisher, E.R. & Martin, C.R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393 (6683), 346-349.

Chen, J.; Minett, A.I.; Liu, Y.; Lynam, C.; Sherrell, P.; Wang, C. & Wallace, G.G. (2008). Direct Growth of Flexible Carbon Nanotube Electrodes. Adv. Mater., 20 (3), 566-570.

106 references, page 1 of 8
Any information missing or wrong?Report an Issue