publication . Part of book or chapter of book . 2010

Carbon Nanotube Supercapacitors

Lu, Wen; Dai, Liming;
Open Access English
  • Published: 01 Mar 2010
  • Publisher: InTech
Abstract
In summary, CNTs have been explored as a new type of electrode materials for supercapacitors. Both randomly entangled and highly aligned CNTs have been investigated. The former is relatively easier to fabricate while the latter has a better capacitor performance. Combining the unique properties of CNTs with the high surface area of activated carbons or the additional pseduocapacitance of redox materials (electroactive polymers and metal oxides), high-capacitance and high-rate nanocomposites are being studied to improve the performance for CNT supercapacitors. CNTs and their composites have been assembled into supercapacitors with different configurations. In add...
Download from
InTech
Part of book or chapter of book . 2010
Provider: InTech
106 references, page 1 of 8

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Potential (V)

Addoun A., Dentzer J. & Ehrburger P. (2002). Porosity of carbons obtained by chemical activation: effect of the nature of the alkaline carbonates. Carbon; 40 (7), 1140-1143.

Abrizzini, C.; Mastragostino, M.; Meneghello, L. & Paraventi, R. (1996). Electronically conducting polymers and activated carbon: Electrode materials in supercapacitor technology. Adv. Mater., 8 (4), 331-334.

Amatucci, G.G.; Badway, F.; Pasquier, A.D. & Zheng, T. (2001). An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc., 148 (8), A930-A939.

An, K.H.; Jeon, K.K.; Heo, J.K.; Lim, S.C.; Bae, D.J. & Lee, Y.H. (2002). High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole. J. Electrochem. Soc., 149 (8), A1058-A1062.

An, K.H.; Kim, W.S., Park, Y.S.; Moon, J.-M.; Bae, D.J.; Lim, S.C.; Lee, Y.S. & Lee, Y.H. (2001). Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Funct. Mater., 11 (5). 387-392.

Barisci, N.J.; Wallace, G.G.; MacFarlane, D.R. & Baughman, R.H. (2004). Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun., 6 (1), 22-27.

Baughman, R.H.; Zakhidov, A.A. & de Heer, W.A. (2002). Carbon Nanotubes--the Route Toward Applications. Science, 297 (5582), 787-792.

Bélanger, D.; Brousse, T. & Long, J.W. (2008). Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. Electrochem. Soc. Interf., 17 (1), 49-52.

Benmoussa, M.; Ibnouelghazi, E.; Bennouna, A. & Ameziane, E. L. (1995). Structural, electrical and optical properties of sputtered vanadium pentoxide thin films. Thin Solid Films, 265 (1-2), 22-28.

Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. J. Power Sources, 91 (1), 37-50.

Burke A. & Arulepp M. (2001). Recent Developments in Carbon-based Electrochemcial Capacitors: Status of the Technology and Future Prospects, Electrochemical Society Proceedings, 2001-21, pp.576.

Buzzeo, M.C.; Evans, R.G. & Compton, R.G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry - A Review. ChemPhysChem, 5 (8), 1106- 1120.

Che, G.; Lakshmi, B.B.; Fisher, E.R. & Martin, C.R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393 (6683), 346-349.

Chen, J.; Minett, A.I.; Liu, Y.; Lynam, C.; Sherrell, P.; Wang, C. & Wallace, G.G. (2008). Direct Growth of Flexible Carbon Nanotube Electrodes. Adv. Mater., 20 (3), 566-570.

106 references, page 1 of 8
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue