Designing a Pattern Recognition Neural Network with a Reject Output and Many Sets of Weights and Biases

Part of book or chapter of book English OPEN
Dung, Le; Mizukawa, Makoto;
(2008)
  • Publisher: InTech

Adding the reject output to the pattern recognition neural network is an approach to help the neural network can classify almost all patterns of a training data set by using many sets of weights and biases, even if the neural network is small. With a smaller number of n... View more
  • References (13)
    13 references, page 1 of 2

    Frank Rosenblatt (1958), “ The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain” , Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408.

    Gloger J. M., Kaltenmeier A., Mandler E., Andrews L.. (1997). "Reject Management in a Handwriting Recognition System", Proceedings of the 4th International Conference on Document Analysis and Recognition, pp: 556-559, ISBN: 0-8186-7898-4, IEEE Computer Society Washington, DC, USA

    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). “ Gradient-based learning applied to document recognition” , Proceedings of the IEEE, vol. 86, pp. 2278--2324, ISSN: 0018- 9219, November 1998

    LeCun, Y., L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. (1995). "Comparison of learning algorithms for handwritten digit recognition," International Conference on Artificial Neural Networks, (F. Fogelman and P. Gallinari, eds.), pp. 53-60, Paris

    Le Dung, Makoto Mizukawa. (2006). “ Automatic handwritten postcode reading system using image processing and neural network technology” , Proceedings of SICE System Integration Division Conference (SI2006), pp. 930-931, Hokkaido, December 2006.

    Martin T. Hagan, Howard B. Demuth, Mark Beale. (1996). “ Neural Network Design” , Thomson Learning, ISBN: 981-240-485-6

    Minsky, Marvin and Seymour Papert (1969), “ Perceptrons: An introduction to Computational Geometry” , MIT Press.

    Patrice Y. Simard, Dave Steinkraus, John C. Platt. (2003). “ Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis” , International Conference on Document Analysis and Recognition (ICDAR), pp. 958-962, IEEE Computer Society, Los Alamitos, 2003

    Rumelhart, David E., Hinton, Geoffrey E., Williams, Ronald J. (1986), “ Learning internal representations by error propagation” , ISBN: 0-262-68053-X, MIT Press

    ISBN 978-953-7619-24-4

  • Metrics
    No metrics available
Share - Bookmark

  • Download from
    InTech via InTech (Part of book or chapter of book, 2008)
  • Cite this publication