publication . Part of book or chapter of book . 2012

The Functionality of p53 in Thyroid Cancer

Ray, Debolina; Balmer, Matthew T.; Gal, Susannah;
Open Access
  • Published: 21 Mar 2012
  • Publisher: InTech
Abnormalities in several important cellular pathways and processes are often a major contributing factor to the progression of cancer. The cell cycle is regulated by checkpoint proteins, including the cyclins and cyclin dependent protein kinases (cdk), which play an important role in the prevention of aberrant cell division. Normal cells have the ability to stop cell division and initiate DNA repair or apoptosis (programmed cell death) when genomic abnormalities cannot be repaired. Apoptotic signaling is necessary for the elimination of unwanted cells arising from exposure to stress or toxins or as a function of normal tissue development and senescence. Proteins...
free text keywords: Programmed cell death, DNA repair, Cell division, Apoptosis, Cyclin-dependent kinase, biology.protein, biology, Cyclin, Cell cycle, Cell biology, Cancer cell
Download fromView all 2 versions
Part of book or chapter of book
Provider: UnpayWall
Part of book or chapter of book . 2012
Provider: InTech
Part of book or chapter of book . 2012
Provider: Crossref
76 references, page 1 of 6

Alarcon-Vargas, D. & Ronai, Z. (2002). p53-Mdm2--the affair that never ends. Carcinogenesis, Vol. 23, pp. 541-547.

Alsner, J.; Jensen, V.; Kyndi, M.; Offersen, B.V.; Vu, P.; Børresen-Dale, A.L. & Overgaard J. (2008). A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients. Acta Oncologica, Vol. 47, pp. 600-607.

Appella, E. & Anderson, C.W. (2000). Signaling to p53: breaking the posttranslational modification code. Pathological Biology,Vol. 48, pp 227-245.

Bai, L. & Zhu, W.G. (2006). P53: Structure, function and therapeutic applications. Journal of Cancer Molecules, Vol. 2, pp. 141-153.

Bell, D.; Varley, J.M.; Szydlo, T.E.; Kang, D.H.; Wahrer, D.C.R.; Shannon, K.E.; Lubratovich, M.; Verselis, S.J.; Isselbacher, K.J.; Fraumeni, J.F.; Birch, J.M.; Li, F.P.; Garber, J.E. & Haber, D.A. ( 1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science, Vol. 286, pp. 2528-2531. [OpenAIRE]

Blagosklonny, M.V.; Giannakakou, P.; Wojtowicz, M.; Romanova, L.Y.; Ain, K.B.; Bates, S.E. & Fojo, T. (1998). Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells. Journal of Clinical Endocrinology and Metabolism, Vol. 83, pp. 2516-22. [OpenAIRE]

Chan, W.M.; Siu, W.Y.; Lau, A. & Poon, R.Y. (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Molecular and Cell Biology, Vol.24, pp. 3536-3551.

Chandrachud, U. & Gal, S. (2009). Three assays show differences in binding of wild-type and mutant p53 to unique gene sequences. Technology in Cancer Research and Treatment, Vol. 8, pp. 445-454. [OpenAIRE]

Chuang, Y.Y.E.; Chen, Y.; Chandramouli, GVR.; Cook, JA.; Coffin, D.; Tsai, MH.; DeGraff, W.; Yan H.; Zhao, S.; Russo, A.; Liu, ET. & Mitchell, J.B. (2002). Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Research. Vol. 62, pp. 6246 - 6254. [OpenAIRE]

Collavin, L.; Lunardi, A. & Sal, G. D. (2010). p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death and Differentiation, Vol. 17, pp. 901-911. [OpenAIRE]

Deppert, W.; Göhler, T.; Koga, H. & Kim, E. (2000). Mutant p53: “gain of function” through perturbation of nuclear structure and function? Journal of Cellular Biochemistry, Vol. 79, pp. 115-122.

Dulic, V.; Kaufmann, W.K.; Wilson, S.J.; Tlsty, T.D.; Lees, E.; Harper, J.W.; Elledge, S.J. & Reed, S.I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, Vol. 76, pp. 1013-1023.

Fagin, J.A.; Matsuo, K.; Karmakar, A.; Chen, D.L.; Tang, S.H. & Koeffler, H.P. (1993). High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. Journal of Clinical Investigations, Vol. 91, pp. 179-184. [OpenAIRE]

Gal, S.; Cook, J. & Howells, L. (2006) Scintillation proximity assay for DNA binding by human p53. Biotechniques, Vol. 41, pp. 303-308.

Gamble, S.C.; Cook, M.C.; Riches, A.C.; Herceg, Z.; Bryant, P.E. & Arrand, J.E. (1999). p53 mutations in tumors derived from irradiated human thyroid epithelial cells. Mutation Research, Vol. 425 , pp. 231-238. [OpenAIRE]

76 references, page 1 of 6
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue