Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Национальный агрегат...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implementation Difficulties Analysis of Stochastic Numerical Runge-Kutta Methods

Authors: Gevorkyan M.N.; Demidova A.V.; Korolkova A.V.; Kulyabov D.S.; Gostev I.M.;

Implementation Difficulties Analysis of Stochastic Numerical Runge-Kutta Methods

Abstract

This article discusses stochastic numerical methods of Runge-Kutta type with weak and strong convergences for systems of stochastic differential equations in Itô form. At the beginning we give a brief overview of the stochastic numerical methods and information from the theory of stochastic differential equations. Then we motivate the approach to the implementation of these methods using source code generation. We discuss the implementation details and the used programming languages and libraries

В данной работе рассматриваются стохастические численные методы типа Рунге-Кутты с слабой и сильной сходимостями для систем стохастических дифференциальных уравнений в форме Ито. Дается краткий обзор основных стохастических численных методов и сведений из теории стохастических дифференциальных уравнений. Далее излагается и мотивируется подход к реализации данных методов с помощью генерации исходного кода. Обсуждаются детали реализации и используемые языки программирования и библиотеки.

Keywords

python, автоматическая генерация кода, automatic code generation, Julia, template engine, шаблонизатор, стохастические дифференциальные уравнения, stochastic numerical methods, stochastic differential equations, стохастические численные методы

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green