Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Национальный агрегат...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Stochastization on One-Step Models

Influence of Stochastization on One-Step Models

Abstract

It is assumed that the introduction of probability in mathematical model makes it more adequate. There are practically no methods of the agreed (depending on structure of the system) introduction of probability in deterministic models. Authors have improved the method of constructing stochastic models for the class of one-step processes and illustrated it by models of population dynamics. Population dynamics was chosen for study because its deterministic models are sufficiently well explored that allows to compare the obtained results with the results already known. We have examined the impact of the introduction of stochastics in the deterministic model, on the example of population dynamics system of type “predator–prey”. Previously obtained stochastic differential equations are studied by the methods of the qualitative theory of differential equations. Stationary state and first integral of the system are obtained. To demonstrate the results the numerical simulations on the basis of Runge–Kutta method for stochastic differential equations are performed. The first integral of deterministic system (phase volume) in the stochastic case does not remain unchanged, but increases, which ultimately leads to the death of one or both populations. One of the disadvantages of the classical system of type “predator–prey” is preservation of the amplitude of populations oscillations. In the stochastic model the process terminates with the death of one or both populations, which from the authors’ point of view makes the model more adequate.

Предполагается, что введение стохастики в математическую модель делает её более адекватной. При этом практически отсутствуют методы согласованного (зависящего от структуры системы) введения стохастики в детерминистические модели. Авторами была усовершенствована методика построения стохастических моделей для класса одношаговых процессов и проиллюстрирована на примере моделей популяционной динамики. Популяционная динамика была выбрана для исследования потому, что её детерминистические модели достаточно хорошо исследованы, что позволяет сравнить полученные результаты с уже известными. В работе изучено влияние введения стохастики в детерминистические модели на примере системы популяционной динамики типа «хищник–жертва». Полученные ранее стохастические дифференциальные уравнения исследуются методами качественной теории дифференциальных уравнений. Получено стационарное состояние и первый интеграл системы. Для демонстрации результатов производится численное моделирование на основе метода Рунге–Кутты для стохастических дифференциальных уравнений. Первый интеграл детерминистической системы (фазовый объём) в стохастическом случае не сохраняется, а возрастает, что в конечном итоге приводит к гибели одной или обеих популяций. Одним из недостатков классической системы типа «хищник–жертва» считается сохранение амплитуды колебаний популяций. В стохастической же модели процесс завершается гибелью одной или обеих популяций, что, с точки зрения авторов, делает модель более адекватной.

Keywords

модель «хищник–жертва», основное кинетическое уравнения, “predator–prey” model, Fokker–Planck equation, master equation, уравнение Фоккера–Планка, стохастические дифференциальные уравнения, stodifferential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green