publication . Article . Book . Part of book or chapter of book . Conference object . Preprint . 2015

Black holes

Roger Penrose;
Open Access
  • Published: 01 Jun 2015 Journal: Nature Astronomy, volume 3, pages 2-5 (eissn: 2397-3366, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-ba...
arXiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: General Medicine, Multidisciplinary, General Physics and Astronomy, General Relativity and Quantum Cosmology
94 references, page 1 of 7

1. M. Alcubierre, B. Brugmann, D. Pollney, E. Seidel, and T. Takahashi, Black hole excision for dynamic black holes, Phys. Rev. D64 (2001), 061501 (5pp.), gr-qc/0104020. [OpenAIRE]

2. M. Alcubierre et al., The 3d grazing collision of two black holes, (2000), grqc/0012079. [OpenAIRE]

3. , Test-beds and applications for apparent horizon finders in numerical relativity, Class. Quant. Grav. 17 (2000), 2159-2190, gr-qc/9809004.

4. M.T. Anderson, On the structure of solutions to the static vacuum Einstein equations, Annales H. Poincar´e 1 (2000), 995-1042, gr-qc/0001018.

5. L. Andersson and P.T. Chru´sciel, On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of null infinity, Phys. Rev. Lett. 70 (1993), 2829-2832.

6. , On asymptotic behaviour of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions”, Dissert. Math. 355 (1996), 1-100.

7. P Anninos, D. Bernstein, S. Brandt, J. Libson, J. Masso, E. Seidel, L. Smarr, W.- M. Suen, and P. Walker, Dynamics of apparent and event horizons, Phys. Rev. Lett. 74 (1995), 630-633, gr-qc/9403011.

8. F. Antonacci and P. Piccione, A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett. 9 (1996), 91-95. [OpenAIRE]

9. C. Barcel´o, S. Liberati, and M. Visser, Analog gravity from field theory normal modes?, Class. Quant. Grav. 18 (2001), 3595-3610, gr-qc/0104001. [OpenAIRE]

10. , Towards the observation of Hawking radiation in Bose-Einstein condensates, (2001), gr-qc/0110036.

11. R. Bartnik and P.T. Chru´sciel, Spectral boundary conditions for Dirac-type equations, in preparation.

12. R. Bartnik and A. Norton, NQS Einstein solver, http://beth.ise.canberra.

13. J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, vol. 67, Marcel Dekker, New York, 1981.

14. J.K. Beem and A. Kr´olak, Cauchy horizon endpoints and differentiability, Jour. Math. Phys. 39 (1998), 6001-6010, gr-qc/9709046.

15. R. Beig and W. Simon, On the uniqueness of static perfect-fluid solutions in general relativity, Commun. Math. Phys. 144 (1992), 373-390. [OpenAIRE]

94 references, page 1 of 7
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue