publication . Article . Other literature type . Preprint . 2019

Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches

Amoroso, Simone; Caron, Sascha; Jueid, Adil; Ruiz De Austri, Roberto; Skands, Peter;
Closed Access
  • Published: 07 May 2019
Abstract
Comment: Tables for the particle spectra with their uncertainties can be found in https://zenodo.org/record/3764809#.XqvK0y-cZQJ; Discussion slightly improved, and some references are added. Comments are welcome!
Subjects
arXiv: High Energy Physics::ExperimentAstrophysics::High Energy Astrophysical Phenomena
free text keywords: energy spectrum [gamma ray], model [hadronization], mass [dark matter], decay [hadron], GLAST [interpretation of experiments], dark matter simulations, dark matter theory, gamma ray theory, 530, gamma ray: energy spectrum, hadronization: model, dark matter: mass, hadron: decay, Monte Carlo, quantum chromodynamics, annihilation, showers, conservation law, fragmentation, CERN LEP Stor, photon, galaxy, interpretation of experiments: GLAST, SLD, High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, Astronomy and Astrophysics, Monte Carlo method, Physics, Particle physics, Gamma ray, Dark matter, ddc:530
Funded by
ARC| Future Fellowships - Grant ID: FT130100744
Project
  • Funder: Australian Research Council (ARC) (ARC)
  • Project Code: FT130100744
  • Funding stream: Future Fellowships
,
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
23 references, page 1 of 2

[1] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys.Rept. 405 (2005) 279-390, [hep-ph/0404175].

[2] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, [arXiv:1502.01589].

[14] A. Achterberg, M. van Beekveld, S. Caron, G. A. GÃşmez-Vargas, L. Hendriks, and R. Ruiz de Austri, Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter, JCAP 1712 (2017), no. 12 040, [arXiv:1709.10429].

[15] A. Metz and A. Vossen, Parton Fragmentation Functions, Prog. Part. Nucl. Phys. 91 (2016) 136-202, [arXiv:1607.02521].

[16] X. Artru and G. Mennessier, String model and multiproduction, Nucl. Phys. B70 (1974) 93-115.

[17] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31-145.

[19] J.-C. Winter, F. Krauss, and G. Soff, A Modified cluster hadronization model, Eur. Phys. J. C36 (2004) 381-395, [hep-ph/0311085].

[32] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159-177, [arXiv:1410.3012].

[33] T. Sjostrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C39 (2005) 129-154, [hep-ph/0408302]. [OpenAIRE]

[34] S. Catani, B. R. Webber, and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B349 (1991) 635-654. [OpenAIRE]

[35] S. Mrenna and P. Skands, Automated Parton-Shower Variations in Pythia 8, Phys. Rev. D94 (2016), no. 7 074005, [arXiv:1605.08352].

[36] Particle Data Group Collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C40 (2016), no. 10 100001.

[37] ALEPH Collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1-165.

[38] DELPHI Collaboration, P. Abreu et al., Tuning and test of fragmentation models based on identified particles and precision event shape data, Z. Phys. C73 (1996) 11-60. [OpenAIRE]

[39] P. Skands, Introduction to QCD, in Proceedings, 2nd Asia-Europe-Pacific School of High-Energy Physics (AEPSHEP 2014): Puri, India, November 04âĂŞ17, 2014, pp. 341-420, 2013. arXiv:1207.2389. [,63(2107)].

23 references, page 1 of 2
Abstract
Comment: Tables for the particle spectra with their uncertainties can be found in https://zenodo.org/record/3764809#.XqvK0y-cZQJ; Discussion slightly improved, and some references are added. Comments are welcome!
Subjects
arXiv: High Energy Physics::ExperimentAstrophysics::High Energy Astrophysical Phenomena
free text keywords: energy spectrum [gamma ray], model [hadronization], mass [dark matter], decay [hadron], GLAST [interpretation of experiments], dark matter simulations, dark matter theory, gamma ray theory, 530, gamma ray: energy spectrum, hadronization: model, dark matter: mass, hadron: decay, Monte Carlo, quantum chromodynamics, annihilation, showers, conservation law, fragmentation, CERN LEP Stor, photon, galaxy, interpretation of experiments: GLAST, SLD, High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, Astronomy and Astrophysics, Monte Carlo method, Physics, Particle physics, Gamma ray, Dark matter, ddc:530
Funded by
ARC| Future Fellowships - Grant ID: FT130100744
Project
  • Funder: Australian Research Council (ARC) (ARC)
  • Project Code: FT130100744
  • Funding stream: Future Fellowships
,
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
23 references, page 1 of 2

[1] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys.Rept. 405 (2005) 279-390, [hep-ph/0404175].

[2] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, [arXiv:1502.01589].

[14] A. Achterberg, M. van Beekveld, S. Caron, G. A. GÃşmez-Vargas, L. Hendriks, and R. Ruiz de Austri, Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter, JCAP 1712 (2017), no. 12 040, [arXiv:1709.10429].

[15] A. Metz and A. Vossen, Parton Fragmentation Functions, Prog. Part. Nucl. Phys. 91 (2016) 136-202, [arXiv:1607.02521].

[16] X. Artru and G. Mennessier, String model and multiproduction, Nucl. Phys. B70 (1974) 93-115.

[17] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31-145.

[19] J.-C. Winter, F. Krauss, and G. Soff, A Modified cluster hadronization model, Eur. Phys. J. C36 (2004) 381-395, [hep-ph/0311085].

[32] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159-177, [arXiv:1410.3012].

[33] T. Sjostrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C39 (2005) 129-154, [hep-ph/0408302]. [OpenAIRE]

[34] S. Catani, B. R. Webber, and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B349 (1991) 635-654. [OpenAIRE]

[35] S. Mrenna and P. Skands, Automated Parton-Shower Variations in Pythia 8, Phys. Rev. D94 (2016), no. 7 074005, [arXiv:1605.08352].

[36] Particle Data Group Collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C40 (2016), no. 10 100001.

[37] ALEPH Collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1-165.

[38] DELPHI Collaboration, P. Abreu et al., Tuning and test of fragmentation models based on identified particles and precision event shape data, Z. Phys. C73 (1996) 11-60. [OpenAIRE]

[39] P. Skands, Introduction to QCD, in Proceedings, 2nd Asia-Europe-Pacific School of High-Energy Physics (AEPSHEP 2014): Puri, India, November 04âĂŞ17, 2014, pp. 341-420, 2013. arXiv:1207.2389. [,63(2107)].

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue