publication . Conference object . Preprint . 2012

Timelike Compton Scattering from JLAB to RHIC and LHC energies

L. Szymanowski; Bernard Pire; J. Wagner;
Open Access
  • Published: 10 Jul 2012
  • Publisher: Sissa Medialab
  • Country: France
Timelike Compton scattering (TCS) i.e. the exclusive photoproduction of a lepton pair with large invariant mass nicely complements the already successful experimental study of deeply virtual Compton scattering (DVCS). The same Generalized Parton Distributions enter both amplitudes, which offer a promissing way to access the quark and gluon nucleon structure. We review recent progress in this domain, emphasizing the fact that analyticity and factorization properties dictate the relation of the NLO corrections to TCS to those of DVCS. We also stress that data on TCS at high energy should be available soon thanks to the proposed experimental program at JLab at 12 G...
arXiv: High Energy Physics::ExperimentHigh Energy Physics::Phenomenology
free text keywords: High Energy Physics - Phenomenology, High Energy Physics - Experiment, Nuclear Experiment, Nuclear Theory, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], Nucleon, Invariant mass, Particle physics, Large Hadron Collider, Physics, Gluon, Parton, Collider, law.invention, law, Compton scattering, Quark
Funded by
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
17 references, page 1 of 2

[1] D. Müller et al., Fortsch. Phys. 42, 101 (1994); X. Ji, Phys. Rev. Lett. 78, 610 (1997); A. V. Radyushkin, Phys. Rev. D56, 5524 (1997); J. C. Collins and A. Freund, Phys. Rev. D59, 074009 (1999).

[2] M. Diehl, Phys. Rept. 388 (2003) 41; A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005); S. Boffi and B. Pasquini, Riv. Nuovo Cim. 30, 387 (2007).

[3] M. Burkardt, Phys. Rev. D 62, 071503 (2000) and Int. J. Mod. Phys. A 18, 173 (2003); J. P. Ralston and B. Pire, Phys. Rev. D 66, 111501 (2002); M. Diehl, Eur. Phys. J. C 25, 223 (2002).

[4] E. R. Berger, M. Diehl and B. Pire, Eur. Phys. J. C 23, 675 (2002).

[5] P. Nadel-Turonski et al., AIP Conf. Proc. 1182, 843 (2009); T. Horn et al., AIP Conf. Proc. 1374, 542 (2011).

[6] B. Pire, L. Szymanowski and J. Wagner, Phys. Rev. D 83, 034009 (2011).

[7] A. V. Belitsky et al., Phys. Lett. B 474, 163 (2000); L. Mankiewicz et al., Phys. Lett. B 425, 186 (1998); X. D. Ji and J. Osborne, Phys. Rev. D 58, 094018 (1998) and Phys. Rev. D 57, 1337 (1998).

[8] D. Mueller, B. Pire, L. Szymanowski and J. Wagner, arXiv:1203.4392 [hep-ph].

[9] H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner. Work in preparation.

[10] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007).

[11] D. Boer et al., arXiv:1108.1713 [nucl-th].

[12] J. L. Abelleira Fernandez et al. [LHeC Study Group Collaboration], arXiv:1206.2913 [physics.acc-ph].

[13] C. A. Bertulani, S. R. Klein and J. Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271

[14] B. Pire, L. Szymanowski and J. Wagner, Phys. Rev. D 79, 014010 (2009).

[15] T. Altinoluk, B. Pire, L. Szymanowski and S. Wallon, arXiv:1206.3115 [hep-ph].

17 references, page 1 of 2
Any information missing or wrong?Report an Issue