publication . Article . Other literature type . Preprint . 2007

Adaptive finite element method for simulation of optical nano structures

Pomplun, Jan; Burger, Sven; Zschiedrich, Lin; Schmidt, Frank;
Open Access
  • Published: 14 Nov 2007 Journal: physica status solidi (b), volume 244, pages 3,419-3,434 (issn: 0370-1972, eissn: 1521-3951, Copyright policy)
  • Publisher: Wiley
We discuss realization, properties and performance of the adaptive finite element approach to the design of nano-photonic components. Central issues are the construction of vectorial finite elements and the embedding of bounded components into the unbounded and possibly heterogeneous exterior. We apply the finite element method to the optimization of the design of a hollow core photonic crystal fiber. Thereby we look at the convergence of the method and discuss automatic and adaptive grid refinement and the performance of higher order elements.
arXiv: Physics::Optics
free text keywords: Topology, Finite element limit analysis, Optics, business.industry, business, Extended finite element method, Finite element method, Physics, Mixed finite element method, Photonic-crystal fiber, Photonic crystal, Embedding, Condensed matter physics, Convergence (routing), Physics - Optics
Related Organizations
16 references, page 1 of 2

[1] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. In A. Iserles, editor, Acta Numerica 2000, pages 1-102. Cambridge University Press.

[2] J. Be´renger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185-200, 1994.

[3] S. Burger, R. Klose, A. Scha¨dle, F. Schmidt, and L. Zschiedrich. Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3d photonic crystal structures. In A. M. Anile, G. Ali, and G. Mascali, editors, Scientific Computing in Electrical Engineering, pages 169-175. Springer Verlag, 2006.

[4] F. Couny, F. Benabid, and P.S. Light. Large-pitch kagome structured hollow-core photonic crystal fiber. Optics Letters, 31(24):3574-3576, 2006. [OpenAIRE]

[5] R.F. Cregan, B. J. Mangan, J.C. Knight, P. St. J. Russel, P. J. Roberts, and D.C. Allan. Single-mode photonic band gap guidance of light in air. Science, 285(5433):1537-1539, 1999. [OpenAIRE]

[6] R. Holzl o¨hner, S. Burger, P. J. Roberts, and J. Pomplun. Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method. Journal of the European Optical Society, 1(06011), 2006.

[7] S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, , and M. Wegener. Photonic metamaterials: Magnetism at optical frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12:1097-1105, 2006.

[8] Peter Monk. Finite Element Methods for Maxwell's Equations. Oxford University Press, 2003.

[9] J.C. Nedelec. Mixed finite elements in R3. Numer. Math., 35:315-341, 1980.

[10] J. Pomplun, R. Holzl o¨hner, S. Burger, L. Zschiedrich, and F. Schmidt. FEM investigation of leaky modes in hollow core photonic crystal fibers. volume 6480, page 64800M. Proc. SPIE, 2007.

[11] J. Pomplun, L. Zschiedrich, R. Klose, F. Schmidt, and S. Burger. Finite Element simulation of radiation losses in photonic crystal fibers. submitted to PSS, 2007. [OpenAIRE]

[12] P. St. J. Russell. Photonic crystal fibers. Science, 299(5605):358-362, 2003.

[13] F. Schmidt. Solution of Interior-Exterior Helmholtz-Type Problems Based on the Pole Condition Concept: Theory and Algorithms. Habilitation thesis, Free University Berlin, Fachbereich Mathematik und Informatik, 2002.

[14] L. Zschiedrich, S. Burger, R. Klose, A. Scha¨dle, and F. Schmidt. Jcmmode: an adaptive finite element solver for the computation of leaky modes. In Y. Sidorin and C. A. Wa¨chter, editors, Integrated Optics: Devices, Materials, and Technologies IX, volume 5728, pages 192-202. Proc. SPIE, 2005.

[15] L. Zschiedrich, S. Burger, J. Pomplun, and F. Schmidt. Goal Oriented Adaptive Finite Element Method for the Precise Simulation of Optical Components. volume 6475, page 64750H. Proc. SPIE, 2007. [OpenAIRE]

16 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue