publication . Article . Preprint . Other literature type . 2019

A general statistic to test an optimally weighted combination of common and/or rare variants

Zhang, Jianjun; Wu, Baolin; Sha, Qiuying; Zhang, Shuanglin; Wang, Xuexia;
Open Access
  • Published: 09 Mar 2019 Journal: Genetic Epidemiology, volume 43, pages 966-979 (issn: 0741-0395, eissn: 1098-2272, Copyright policy)
  • Publisher: Wiley
<jats:title>Abstract</jats:title><jats:p>Both genome-wide association study and next generation sequencing data analyses are widely employed in order to identify disease susceptible common and/or rare genetic variants in many large scale genetic studies. Rare variants generally have large effects though they are hard to detect due to their low frequency. Currently, many existing statistical methods for rare variants association studies employ a weighted combination scheme, which usually puts subjective weights or suboptimal weights based on some ad hoc assumptions (e.g. ignoring dependence between rare variants). In this study, we analytically derive optimal wei...
free text keywords: Genetics(clinical), Epidemiology, Genetic association, Biology, Statistic, Statistics, Schizophrenia, medicine.disease, medicine, FYN, Type I and type II errors, Genetics, Uniformly most powerful test, Covariate, Genetic analysis
Funded by
NIH| Genetic Analysis of Common Diseases: An Evaluation
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01GM031575-22
NIH| Statistical Methods for Rare Variant Association Studies
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1R15HG008209-01A1
45 references, page 1 of 3

Allen, H. L., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F.,: : : & Ferreira, T. (2010). Hundreds of variants clustered in genomic loci and biological pathways a ect human height. Nature 467(7317): 832.

Andres, A. M., Clark, A. G., Shimmin, L., Boerwinkle, E., Sing, C. F., & Hixson, J. E. (2007). Understanding the accuracy of statistical haplotype inference with sequence data of known phase. Genetic epidemiology 31(7): 659-671.

Baker, E., Schmidt, K. M., Sims, R., O'Donovan, M. C., Williams, J., Holmans, P.,: : : & Consortium, W. T. G. (2018). POLARIS: Polygenic LD-adjusted risk score approach for set-based analysis of GWAS data. Genetic epidemiology 42(4): 366-377.

Bansal, V., Libiger, O., Torkamani, A., & Schork, N. J. (2010). Statistical analysis strategies for association studies involving rare variants. Nature Reviews Genetics 11(11): 773. [OpenAIRE]

Cirulli, E. T., & Goldstein, D. B. (2010). Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature Reviews Genetics 11(6): 415.

Cohen, J. C., Pertsemlidis, A., Fahmi, S., Esmail, S., Vega, G. L., Grundy, S. M., & Hobbs, H. H. (2006). Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proceedings of the National Academy of Sciences of the United States of America 103(6): 1810-1815.

Curtis, D., Coelewij, L., Liu, S. H., Humphrey, J., & Mott, R. (2018). Weighted burden analysis of exome-sequenced case-control sample implicates synaptic genes in schizophrenia aetiology. Behavior genetics 48(3): 198-208. [OpenAIRE]

Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H., & Goldstein, D. B. (2010). Rare variants create synthetic genome-wide associations. PLoS biology 8(1): e1000294.

Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P.,: : : & Carrera, N. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487): 179. [OpenAIRE]

Genovese, G., Fromer, M., Stahl, E. A., Ruderfer, D. M., Chambert, K., Landn, M.,: : : & Hultman, C. M. (2016). Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature neuroscience 19(11): 1433. [OpenAIRE]

Han, F., & Pan, W. (2010). A data-adaptive sum test for disease association with multiple common or rare variants. Human heredity 70(1): 42-54.

Heid, I. M., Jackson, A. U., Randall, J. C., Winkler, T. W., Qi, L., Steinthorsdottir, V.,: : : & Workalemahu, T. (2010). Meta-analysis identi es 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature genetics 42(11): 949.

Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in nite populations. Theoretical and Applied Genetics 38(6): 226-231.

Hudson, R. R. (1985). The sampling distribution of linkage disequilibrium under an in nite allele model without selection. Genetics 109(3): 611-631.

Ji, W., Foo, J. N., O'Roak, B. J., Zhao, H., Larson, M. G., Simon, D. B., : : : & Lifton, R. P. (2008). Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature genetics 40(5): 592.

45 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue