# AT structure of AH algebras with the ideal property and torsion free K-theory ✩

- Published: 07 Oct 2015 Journal: Physics Letters B, volume 700, pages 65-67 (issn: 0370-2693, Copyright policy)
- Publisher: Elsevier BV

- Université Paris Diderot - Paris 7 France
- Michigan State University United States
- Swansea University United Kingdom

- Funder: National Science Foundation (NSF)
- Project Code: 0140046
- Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics

- Funder: European Commission (EC)
- Project Code: 264735
- Funding stream: FP7 | SP3 | PEOPLE

- Funder: European Commission (EC)
- Project Code: 267104
- Funding stream: FP7 | SP2 | ERC

- Funder: National Science Foundation (NSF)
- Project Code: 0554930
- Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics

[1] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, NJ, 1926.

[2] R. Lipschitz, Ausdehnung der Theorie der Mininmalflaechen, J. Reine Angew. Math. 78 (1) (1874).

[3] P.A.M. Dirac, An extensible model of the electron, Proc. R. Soc. Lond. A 268 (1962) 57. [OpenAIRE]

[4] J. Hoppe, Quantum theory of a massless relativistic surface and a twodimensional bound state problem, PhD thesis, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, 1982, http://despace.mit.edu/handle/ 1721.1/15717.

[5] J. Hoppe, Conservation laws and formation of singularities in relativistic field theories of extended objects, in: Nonlinear Waves, in: GAKUTO International Series, vol. 8, Gakuto, Tokyo, 1996, arXiv:hep-th/9503069.

[6] J. Hoppe, Some classical solutions of relativistic membrane equations in 4 space-time dimensions, Phys. Lett. B 321 (1994) 333.

[7] A.A. Zheltukhin, Laplace-Beltrami operator and exact solutions for branes, Nucl. Phys. B 867 (2013) 763; A.A. Zheltukhin, Toroidal p-branes, anharmonic oscillators and (hyper)elliptic solutions, Nucl. Phys. B 858 (2012) 142-154; M. Trzetrzelewski, A.A. Zheltukhin, Exact solutions for U (1) globally invariant membranes, Phys. Lett. B 679 (2009) 523-528.

[8] L. Bianchi, Lezioni di geometria differentiale, in: Richerce sulle superficie isoterme e sulla deformazione delle quadriche, Pisa 1894, 1902, 1909, in: Annali di Matematica (3), vol. 11, 1905, pp. 93-157; L. Bianchi, Vorlesungen ueber Differentialgeometrie, Teubner, Leipzig, 1899. [OpenAIRE]

[9] A. Thybaut, Sur la déformation du paraboloide er sur quelques problems qui s'y, rattachent, Ann. l'Ecole Norm., Ser. 3 14 (1897) 45.

[10] J. Eggers, J. Hoppe, Singularity formation for timelike extremal hypersurfaces, Phys. Lett. B 680 (2009) 274.

[11] Luc Nguyen, Gang Tian, On smoothness of timelike maximal cylinders in three dimensional vacuum spacetimes, arXiv:1201.5183.

[12] M. Bordemann, J. Hoppe, The dynamics of relativistic membranes: I. Reduction to two-dimensional fluid dynamics, Phys. Lett. B 317 (1993) 315. [OpenAIRE]

[13] J. Hoppe, Surface motions and fluid dynamics, Phys. Lett. B 335 (1994), arXiv: hep-th/9405001.

[14] M. Bordemann, J. Hoppe, Diffeomorphism invariant integrable field theories and hypersurface motions in Riemann diffeomorphisms, Helv. Phys. Acta 70 (1998) 302, arXiv:hep-th/9602020.