Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jagiellonian Univers...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biogeography
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref; u:cris
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

seasonal shifts of biodiversity patterns and species elevation ranges of butterflies and moths along a complete rainforest elevational gradient on mount cameroon

Authors: Robert Tropek; Jan Mertens; Jiří Doležal; Jiří Doležal; Ishmeal N. Kobe; Ishmeal N. Kobe; Szabolcs Sáfián; +14 Authors

seasonal shifts of biodiversity patterns and species elevation ranges of butterflies and moths along a complete rainforest elevational gradient on mount cameroon

Abstract

AbstractAimTemporal dynamics of biodiversity along tropical elevational gradients are unknown. We studied seasonal changes of Lepidoptera biodiversity along the only complete forest elevational gradient in the Afrotropics. We focused on shifts of species richness patterns, seasonal turnover of communities and seasonal shifts of species’ elevational ranges, the latter often serving as an indicator of the global change effects on mountain ecosystems.LocationMount Cameroon, Cameroon.TaxonButterflies and moths (Lepidoptera).MethodsWe quantitatively sampled nine groups of Lepidoptera by bait‐trapping (16,800 trap‐days) and light‐catching (126 nights) at seven elevations evenly distributed along the elevational gradient from sea level (30 m a.s.l.) to timberline (2,200 m a.s.l.). Sampling was repeated in three seasons.ResultsAltogether, 42,936 specimens of 1,099 species were recorded. A mid‐elevation peak of species richness was detected for all groups but Eupterotidae. This peak shifted seasonally for five groups, most of them ascending during the dry season. Seasonal shifts of species’ elevational ranges were mostly responsible for these diversity pattern shifts along elevation: we found general upward shifts in fruit‐feeding butterflies, fruit‐feeding moths and Lymantriinae from beginning to end of the dry season. Contrarily, Arctiinae shifted upwards during the wet season. The average seasonal shifts of elevational ranges often exceeded 100 m and were even several times higher for numerous species.Main conclusionsWe report seasonal uphill and downhill shifts of several lepidopteran groups. The reported shifts can be driven by both delay in weather seasonality and shifts in resource availability, causing phenological delay of adult hatching and/or adult migrations. Such shifts may lead to misinterpretations of diversity patterns along elevation if seasonality is ignored. More importantly, considering the surprising extent of seasonal elevational shifts of species, we encourage taking account of such natural temporal dynamics while investigating the global climate change impact on communities of Lepidoptera in tropical mountains.

Countries
Poland, Austria
Keywords

106043 Systematische Zoologie, NYMPHALIDAE, DIVERSITY, 106054 Zoology, 106043 Systematic zoology, phenology, GEOMETRIDAE, elevational ranges, ASSEMBLAGES, 106026 Ecosystem research, SATYRINAE, CLIMATE-CHANGE, spatio‐temporal dynamics, 106003 Biodiversity research, seasonality, DRY SEASON, spatio-temporal dynamics, LEPIDOPTERA, elevational shifts, TIME, Lepidoptera, 106003 Biodiversitätsforschung, 106054 Zoologie, 106026 Ökosystemforschung, biodiversity patterns, ABUNDANCE, tropical rainforest, Afrotropics, altitude

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 10%
Green
bronze