Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 2 versions
Publication . Article . 2018

The delivery of water by impacts from planetary accretion to present

Daly, R. Terik; Schultz, Peter H.;
Open Access   English  
Published: 01 Apr 2018 Journal: Science Advances, volume 4, issue 4 (eissn: 2375-2548, Copyright policy )
Publisher: American Association for the Advancement of Science
Abstract
Dynamical models and observational evidence indicate that water-rich asteroids and comets deliver water to objects throughout the solar system, but the mechanisms by which this water is captured have been unclear. New experiments reveal that impact melts and breccias capture up to 30% of the water carried by carbonaceous chondrite–like projectiles under impact conditions typical of the main asteroid belt impact and the early phases of planet formation. This impactor-derived water resides in two distinct reservoirs: in impact melts and projectile survivors. Impact melt hosts the bulk of the delivered water. Entrapment of water within impact glasses and melt-bearing breccias is therefore a plausible source of hydration features associated with craters on the Moon and elsewhere in the solar system and likely contributed to the early accretion of water during planet formation.
Impact melts and breccias trap surprisingly large quantities of water carried by carbonaceous chondrite–like impactors.
Subjects by Vocabulary

Microsoft Academic Graph classification: Observational evidence Accretion (astrophysics) Asteroid Astrobiology Solar System Asteroid belt Impact crater Breccia Geology Planet

Subjects

Research Article, Research Articles, SciAdv r-articles, Planetary Science, Multidisciplinary

48 references, page 1 of 5

1 Albarède F., Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).19865163 [OpenAIRE] [PubMed]

2 Fischer-Gödde M., Kleine T., Ruthenium isotopic evidence for an inner solar system origin of the late veneer. Nature 541, 525–527 (2017).28128236 [PubMed]

3 Sarafian A. R., Nielsen S. G., Marschall H. R., Gaetani G. A., Hauri E. H., Righter K., Sarafian E., Angrite meteorites record the onset and flux of water to the inner solar system. Geochim. Cosmochim. Acta 212, 156–166 (2017).

4 Sarafian A. R., Nielsen S. G., Marschall H. R., McCubbin F. M., Monteleone B. D., Early accretion of water in the inner solar system from a carbonaceous chondrite–like source. Science 346, 623–626 (2014).25359971 [OpenAIRE] [PubMed]

5 Saal A. E., Hauri E. H., Van Orman J. A., Rutherford M. J., Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).23661641 [PubMed]

6 Prettyman T. H., Mittlefehldt D. W., Yamashita N., Lawrence D. J., Beck A. W., Feldman W. C., McCoy T. J., McSween H. Y., Toplis M. J., Titus T. N., Tricarico P., Reedy R. C., Hendricks J. S., Forni O., Le Corre L., Li J.-Y., Mizzon H., Reddy V., Raymond C. A., Russell C. T., Elemental mapping by dawn reveals exogenic H in Vesta’s regolith. Science 338, 242–246 (2012).22997135 [PubMed]

7 De Sanctis M. C., Combe J.-P., Ammannito E., Palomba E., Longobardo A., McCord T. B., Marchi S., Capaccioni F., Capria M. T., Mittlefehldt D. W., Pieters C. M., Sunshine J., Tosi F., Zambon F., Carraro F., Fonte S., Frigeri A., Magni G., Raymond C. A., Russell C. T., Turrini D., Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the dawn mission. Astrophys. J. Lett.758, L36 (2012).

8 Tyburczy J. A., Frisch B., Ahrens T. J., Shock-induced volatile loss from a carbonaceous chondrite: Implications for planetary accretion. Earth Planet. Sci. Lett.80, 201–207 (1986).

9 O’Brien D. P., Sykes M. V., The origin and ev olution of the asteroid belt—Implications for Vesta and Ceres. Space Sci. Rev.163, 41–61 (2011).

10 R. S. Harris, P. H. Schultz, P. L. King, Bridging the gap II: Effect of target properties on the impact cratering process (abstract 8051), Saint-Hubert, Canada, 22 to 26 September 2007.

Funded by
NSF| Graduate Research Fellowship Program
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1058262
  • Funding stream: Directorate for Education & Human Resources | Division of Graduate Education
Download fromView all 3 sources
lock_open