Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Paleobiology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convergence and constraint in the cranial evolution of mosasaurid reptiles and early cetaceans

Authors: Rebecca F. Bennion; Jamie A. MacLaren; Ellen J. Coombs; Felix G. Marx; Olivier Lambert; Valentin Fischer;

Convergence and constraint in the cranial evolution of mosasaurid reptiles and early cetaceans

Abstract

AbstractThe repeated return of tetrapods to aquatic life provides some of the best-known examples of convergent evolution. One comparison that has received relatively little focus is that of mosasaurids (a group of Late Cretaceous squamates) and archaic cetaceans (the ancestors of modern whales and dolphins), both of which show high levels of craniodental disparity, similar initial trends in locomotory evolution, and global distributions. Here we investigate convergence in skull ecomorphology during the initial aquatic radiations of these groups. A series of functionally informative ratios were calculated from 38 species, with ordination techniques used to reconstruct patterns of functional ecomorphospace occupation. The earliest fully aquatic members of each clade occupied different regions of ecomorphospace, with basilosaurids and early russellosaurines exhibiting marked differences in cranial functional morphology. Subsequent ecomorphological trajectories notably diverge: mosasaurids radiated across ecomorphospace with no clear pattern and numerous reversals, whereas cetaceans notably evolved toward shallower, more elongated snouts, perhaps as an adaptation for capturing smaller prey. Incomplete convergence between the two groups is present among megapredatory and longirostrine forms, suggesting stronger selection on cranial function in these two ecomorphologies. Our study highlights both the similarities and divergences in craniodental evolutionary trajectories between archaic cetaceans and mosasaurids, with convergences transcending their deeply divergent phylogenetic affinities.

Country
Belgium
Keywords

Chemistry, Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
hybrid