Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 3 versions
Publication . Article . Other literature type . 2021

Ternary Multicomponent Adsorption Modelling Using ANN, LS-SVR, and SVR Approach – Case Study

Amina Yettou; Maamar Laidi; Abdelmadjid El Bey; Salah Hanini; Mohamed Hentabli; Omar Khaldi; Mihoub Abderrahim;
Open Access
English
Published: 01 Aug 2021 Journal: Kemija u Industriji, volume 70, issue 9, pages 509-518 (issn: 0022-9830, eissn: 1334-9090, Copyright policy )
Publisher: Croatian Society of Chemical Engineers
Country: Croatia
Abstract

Cilj ovog rada bio je razviti tri metode temeljene na umjetnoj inteligenciji za modeliranje trostruke adsorpcije iona teških metala {Pb2+, Hg2+, Cd2+, Cu2+, Zn2+, Ni2+, Cr4+} na različitim adsorbatima {aktivni ugljen, kitozan, danski treset, treset Heilongjiang, ugljik glave suncokreta i ugljik stabljike suncokreta). Rezultati pokazuju da se regresija potpornih vektora (SVR) pokazala nešto boljom, preciznijom, stabilnijom i bržom od regresije potpornih vektora najmanjih kvadrata (LS-SVR) i umjetnih neuronskih mreža (ANN). Za procjenu kinetike trostrukog adsorpcijskog sustava višekomponentnog sustava preporučuje se model SVR. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna.

The aim of this work was to develop three artificial intelligence-based methods to model the ternary adsorption of heavy metal ions {Pb2+, Hg2+, Cd2+, Cu2+, Zn2+, Ni2+, Cr4+} on different adsorbates {activated carbon, chitosan, Danish peat, Heilongjiang peat, carbon sunflower head, and carbon sunflower stem). Results show that support vector regression (SVR) performed slightly better, more accurate, stable, and more rapid than least-square support vector regression (LS-SVR) and artificial neural networks (ANN). The SVR model is highly recommended for estimating the ternary adsorption kinetics of a multicomponent system. This work is licensed under a Creative Commons Attribution 4.0 International License.

Subjects by Vocabulary

Microsoft Academic Graph classification: Ternary operation Materials science Adsorption Thermodynamics

Subjects

multicomponent adsorption, heavy metals, artificial neural networks, support vector regression, least-square support vector regression, Chemistry, QD1-999, multicomponent adsorption; heavy metals; artificial neural networks; support vector regression; least-square support vector regression, višekomponentna adsorpcija; teški metali; umjetne neuronske mreže; regresija potpornih vektora; regresija potpornih vektora najmanjih kvadrata, General Chemical Engineering, General Chemistry

Download fromView all 3 sources
lock_open
Kemija u Industriji
Article . 2021
Providers: Crossref
moresidebar