Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Remote Sensing of En...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Remote Sensing of Environment
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

improving satellite retrieved night time infrared sea surface temperatures in aerosol contaminated regions

Authors: Bingkun Luo; Peter J. Minnett; Chelle Gentemann; Goshka Szczodrak;

improving satellite retrieved night time infrared sea surface temperatures in aerosol contaminated regions

Abstract

Abstract Satellite retrievals of sea surface temperature (SST) have become necessary for many applications. Satellite infrared imaging radiometers passively measure the radiance emitted and reflected by the surface of the Earth and atmosphere. Tropospheric aerosols increase the signal attenuation at the satellite height, degrading the accuracy of SST retrievals. In this study to assess the infrared radiative effects of aerosols on satellite-derived skin SSTs (SSTskin), MODIS (MODerate-resolution Imaging Spectroradiometer) SSTskin retrievals are compared with quality-controlled, collocated SSTskin measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on research cruises during the Aerosols and Ocean Science Expeditions (AEROSE), and sub-surface temperatures measured by thermistors on drifting buoys. In this region, SSTskin retrievals from the MODIS on the Aqua satellite are generally much cooler than the in-situ measurements. In the Saharan outflow area between 90° W to 90° E and 20° S to 35° N where aerosol optical depths may be >0.5, satellite SSTskin are often >1 K cooler than the in situ data. The goal of this research is to determine the characteristics of aerosol effects on satellite retrieved infrared SST, and to derive formulae for improving accuracies of infrared-derived SSTs in aerosol-contaminated regions. A new method to derive a night-time Dust-induced SST Difference Index (DSDI) algorithm based on simulated brightness temperatures and Principal component (PC) analysis (PCA) at infrared wavelengths of 3.8, 8.9, 10.8 and 12.0 μm, was developed using radiative transfer simulations. The satellite SSTskin biases and standard deviations, derive by comparisons with coincident and collocated surface and in situ measurements, are reduced by 0.263 K and 0.166 K after the DSDI correction. This method can also improve the fraction of useful data available compared to the usual approach of discarding measurements identified as being contaminated by the effects of aerosols.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze