Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Results in Physicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Physics
Article . 2021
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Physics
Article . 2021
Data sources: DOAJ-Articles
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mathematical modeling and analysis of the novel Coronavirus using Atangana–Baleanu derivative

Authors: Ebraheem O. Alzahrani; M. M. El-Dessoky; Dumitru Baleanu;

Mathematical modeling and analysis of the novel Coronavirus using Atangana–Baleanu derivative

Abstract

The novel Coronavirus infection disease is becoming more complex for the humans society by giving death and infected cases throughout the world. Due to this infection, many countries of the world suffers from great economic loss. The researchers around the world are very active to make a plan and policy for its early eradication. The government officials have taken full action for the eradication of this virus using different possible control strategies. It is the first priority of the researchers to develop safe vaccine against this deadly disease to minimize the infection. Different approaches have been made in this regards for its elimination. In this study, we formulate a mathematical epidemic model to analyze the dynamical behavior and transmission patterns of this new pandemic. We consider the environmental viral concentration in the model to better study the disease incidence in a community. Initially, the model is constructed with the derivative of integer-order. The classical epidemic model is then reconstructed with the fractional order operator in the form of Atangana–Baleanu derivative with the nonsingular and nonlocal kernel in order to analyze the dynamics of Coronavirus infection in a better way. A well-known estimation approach is used to estimate model parameters from the COVID-19 cases reported in Saudi Arabia from March 1 till August 20, 2020. After the procedure of parameters estimation, we explore some basic mathematical analysis of the fractional model. The stability results are provided for the disease free case using fractional stability concepts. Further, the uniqueness and existence results will be shown using the Picard–Lendelof approach. Moreover, an efficient numerical scheme has been proposed to obtain the solution of the model numerically. Finally, using the real fitted parameters, we depict many simulation results in order to demonstrate the importance of various model parameters and the memory index on disease dynamics and possible eradication.

Subjects by Vocabulary

Microsoft Academic Graph classification: Estimation Mathematical optimization Computer science Stability (learning theory) Action (physics) Kernel (statistics) Pandemic Order operator Uniqueness Epidemic model

Keywords

COVID-19 model, Physics, QC1-999, General Physics and Astronomy, Real data, Article, Numerical simulations, Atangana–Baleanu derivative

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Related to Research communities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.