Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Space Physics
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

new modes and mechanisms of long term ionospheric tec variations from global ionosphere maps

Authors: Shuanggen Jin; Shuanggen Jin; Andres Calabia;

new modes and mechanisms of long term ionospheric tec variations from global ionosphere maps

Abstract

AbstractThe ionosphere is very active and complex due to photo‐ionization from the solar activity, while traditional empirical models can only give a rough description of its actual variations. Nowadays, global ionosphere maps (GIMs) derived from denser Global Navigation Satellite Systems (GNSS) world‐tracking data provide an excellent total electron content (TEC) data set for global ionospheric research and modeling. In this paper, long‐tern variations of 16‐year (2003–2018) TEC time series from GIMs are investigated by using the principal mode analysis (PCA) technique. We analyze the resulting modes in the time‐spectral domain and parameterize the main contributions in terms of solar and magnetospheric forcing, local solar time (LST), and annual variations. The results show that the TEC variability is strongly dependent on the geographical location of the Earth's magnetic field, and the Earth's diurnal rotation modulates its spatial patterns of variability. The latitudinal asymmetry in the global distribution of TEC variations is due to the effects caused by the irregular shape of the Earth's magnetic field along with its diurnal rotation. The analyses of residuals show that periodicities are correlated to the solar wind speed and magnetospheric forcing, especially those located near the southern dip pole at the night side. Furthermore, we found a TEC anomaly at about 15° from the South magnetic dip at the night side, more prominent around 52°S 155°E.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
bronze