Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing Completeness of OpenStreetMap Building Footprints Using a Gamification Approach in MapSwipe

Authors: Tahira Ullah; Sven Lautenbach; Benjamin Herfort; Danijel Schorlemmer;

Assessing Completeness of OpenStreetMap Building Footprints Using a Gamification Approach in MapSwipe

Abstract

Natural hazards threaten millions of people all over the world. To address the risk, exposure and vulnerability models with high resolution data are essential. However, in many areas of the world, exposure models are rather coarse and aggregated over large areas. Although OpenStreetMap (OSM) offers great potential to assess risk at a detailed building-by-building level, completeness of OSM building footprints is still heterogeneous. We present an approach to close this gap by means of crowdsourcing based on the mobile App MapSwipe, where volunteers swipe through satellite images of a region collecting user feedback on classification tasks. For our application, MapSwipe was extended by a completeness feature that allows to classify a tile as “no building”, “complete” or “incomplete”. To assess the quality of the produced data, the completeness feature was applied at four regions. Our results show that the crowdsourced approach yields a reasonable classification performance of the completeness of OSM building footprints. Nevertheless, this study also revealed that volunteers tend to classify nearly completely mapped tiles as “complete”, especially in areas with a high OSM building density. Another factor that influenced the classification performance was the level of alignment of the OSM layer with the satellite imagery.

Keywords

geoinformatics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid