Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Proteomic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Proteomics
Article . 2014
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags

Authors: Richard P, Fahlman; Wei, Chen; Christopher M, Overall;

Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags

Abstract

Abstract Proteolytic processing alters the structure and function of a wide range of proteins in the proteome. We describe a method for the absolute quantification of proteolysis that is compatible with existing quantitative proteomic applications and could be applied on a protein-family wide scale. A tryptic peptide spanning a cleavage site differentiates this intact form of the protein from the corresponding semi-tryptic peptides of a protease cleaved protein. We term such proteomic signatures of specific proteolytic events “proteolytic signature peptides” (PSPs). By quantifying both the tryptic and semi-tryptic PSPs simultaneously with proteotypic peptides common to all forms of the protein both the relative and the absolute amounts of the intact and cleaved protein can be determined. Using synthetic PSP standards of cleavage sites in intact and cleaved proteins the absolute amounts of each form of the protein can be determined. The technique was demonstrated by the simultaneous identification and quantification of matrix metalloproteinase zymogens and their proteolytically activated forms in parallel with conventional absolute quantification of their TIMP inhibitors. For quantification we synthesized a pair of isobaric mass tags, we term CLIP-TRAQ, using C13 labeled reagents that when fragmented during CID generate signature ions at 113.1 or 114.1 respectively. As an expandable platform this allows for the simultaneous identification of multiple proteins and their proteolytic state in complex proteomes on a family-wide scale in parallel with conventional proteomic analysis. This article is part of a Special Issue entitled: CNPN 2013. Biological significance Proteolysis is key to various biological processes and the activity and function of many proteins are dictated by their proteolytic state. The development of methods to quantify protein abundance in conjunction to determining their proteolytic state and hence activity is essential for the complete understanding of the processes for which proteolysis is involved. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?

Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Proteases medicine.medical_treatment Proteolysis Biology Matrix metalloproteinase Cleavage (embryo) Proteomics medicine Protease medicine.diagnostic_test Biochemistry Proteome Bottom-up proteomics

Keywords

Proteomics, Biophysics, Sensitivity and Specificity, Biochemistry, Humans, Trypsin, Carbon Isotopes, Matrix Metalloproteinases, Isotope Labeling, Proteolysis, Peptides, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Funded by
CIHR
Project
  • Funder: Canadian Institutes of Health Research (CIHR)
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.