Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Giant planets around young active stars

Authors: Alexis Heitzmann; Stephen Marsden; Pascal Petit; Matthew Mengel;

Giant planets around young active stars

Abstract

Although our understanding of how planetary systems come to exist has drastically improved over the last two decades, there is still plenty of research to be made around the formation and evolution of massive, short-orbit exoplanets e.g. hot Jupiters, warm Neptunes. Do they form in-situ or far from their host star and later experience migration? By constraining the occurrence rates of these types of planets in every stage of a star’s life, we can better understand their fate and hope to favour one formation/evolution mechanism over another. In this context, it is crucial to estimate the population of these weird planets around young stars. Unfortunately, probing young stars is notoriously difficult due to their strong magnetic activity (or ‘jitter’) inducing spurious radial velocity (RV) signals that often mask the planet(s) RV signature(s) used to detect them. In this work, we used two distinct activity-filtering techniques (Doppler imaging and Gaussian process) and attempted to recover simulated planetary signatures injected behind real stellar RV data exhibiting large jitter. This serves as a proof of concept to find Hot Jupiters in existing legacy datasets.

Related Organizations
Keywords

exoplanets, young sztars, gaussian process, Doppler Imaging, stellar activity

Powered by OpenAIRE graph
Found an issue? Give us feedback