<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.3390/rs14061451
The visible and infrared scanning radiometer (VIRR) onboard the Fengyun-3C (FY-3C) meteorological satellite has 11 μm and 12 μm channels, which are capable of sea surface temperature (SST) observations. This study is based on atmospheric radiative transfer modeling (RTM) by applying Bayesian cloud detection theory and optimal estimation (OE) to obtain sea surface skin temperature (SSTskin) from VIRR in the Northwest Pacific. The inter-calibration of FY-3C/VIRR 11 μm and 12 μm brightness temperature (BT) is carried out using the Moderate Resolution Imaging Spectroradiometer (MODIS) as the reference sensor. Bayesian cloud detection and OE SST retrieval with the calibration BT data is performed to obtain SSTskin. The SSTskin retrievals are compared with the buoy SST with a temporal window of 1 h and a spatial window of 0.01°. The bias is −0.12 °C, and the standard deviation is 0.52 °C. Comparisons of the retrieved SSTskin with the AVHRR (Advanced Very High Resolution Radiometer) SSTskin from European Space Agency Sea Surface Temperature Climate Change Initiative (ESA SST CCI) project show the bias of 0.08 °C and the standard deviation of 0.55 °C. The results indicate that the VIRR SSTskin are consistent with AVHRR SSTskin and buoy SST.
FY-3C/VIRR, Bayesian cloud detection, Science, Q, radiative transfer modeling, optimal estimation, sea surface skin temperature, FY-3C/VIRR; radiative transfer modeling; optimal estimation; Bayesian cloud detection; sea surface skin temperature
FY-3C/VIRR, Bayesian cloud detection, Science, Q, radiative transfer modeling, optimal estimation, sea surface skin temperature, FY-3C/VIRR; radiative transfer modeling; optimal estimation; Bayesian cloud detection; sea surface skin temperature
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |