Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Ecology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Ecology
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

the role of species pools in determining species diversity in spatially heterogeneous communities

Authors: Ronen Ron; Ori Fragman‐Sapir; Ronen Kadmon;

the role of species pools in determining species diversity in spatially heterogeneous communities

Abstract

Abstract The “habitat‐specific species pool hypothesis” proposes that differences between habitats in the sizes of their species pools are the main drivers of diversity responses to habitat heterogeneity. Empirical tests of this hypothesis are not trivial as species might be missing from ecologically suitable habitats due to limited dispersal, while others may occur in unsuitable habitats by means of source–sink dynamics and mass effect. We tested the habitat‐specific species pool hypothesis in a local, environmentally heterogeneous community of annual plants using a novel “ecological selection” experiment. Mixtures of seeds representing the whole community were sown in each habitat, and the emerging species were exposed to six generations of selection by environmental filtering and competition while being blocked from dispersal. A comparison of the total number of species that were able to survive in each habitat (i.e. to pass the selection test) with data on species richness in the natural community allowed us to test the degree to which observed differences in species richness between habitats could be explained by differences in the sizes of the respective species pools. Results supported the species pool hypothesis, showing that differences in the sizes of the habitat‐specific species pools were important in determining diversity responses to habitat heterogeneity. Moreover, species richness showed a unimodal response to local‐scale gradients in habitat productivity, and this response could be attributed to underlying differences in species pool sizes. Both results were robust to properties of the data and the method of analysis. Synthesis. Our results provide a strong experimental evidence that differences in the sizes of habitat‐specific species pools might be important in shaping the diversity of local communities. Future theoretical and empirical studies in community ecology should explore the potential sources and implications of such differences.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
bronze
Related to Research communities