Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
NARCIS
Article . 2020
Data sources: NARCIS
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the semantics of nonwords and their lexical category.

Authors: Giovanni Cassani; Yu-Ying Chuang; R. Harald Baayen;

On the semantics of nonwords and their lexical category.

Abstract

Using computational simulations, this work demonstrates that it is possible to learn a systematic relation between words' sound and their meanings. The sound-meaning relation was learned from a corpus of phonologically transcribed child-directed speech by using the linear discriminative learning (LDL) framework (Baayen, Chuang, Shafaei-Bajestan, & Blevins, 2019), which implements linear mappings between words' form vectors and semantic vectors. Presented with the form vectors of 16 nonwords, taken from a study on word learning (Fitneva, Christiansen, & Monaghan, 2009), the network generated the estimated semantic vectors of the nonwords. As half of these nonwords were created to phonologically resemble English nouns and the other half were phonologically similar to English verbs, we assessed whether the estimated semantic vectors for these nonwords reflect this word category difference. In 7 different simulations, linear discriminant analysis (LDA) successfully discriminated between noun-like nonwords and verb-like nonwords, based on their semantic relation to the words in the lexicon. Furthermore, how well LDA categorized a nonword correlated well with a phonological typicality measure (i.e., the degree of its form being noun-like or verb-like) and with children's performance in an entity/action discrimination task. On the one hand, the results suggest that children can infer the implicit meaning of a word directly from its sound. On the other hand, this study shows that nonwords do land in semantic space, such that children can capitalize on their semantic relations with other elements in the lexicon to decide whether a nonword is more likely to denote an entity or an action. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Countries
Netherlands, Belgium
Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Semantics computer.software_genre Lexicon Noun English verbs Mental lexicon business.industry Phonology Part of speech Categorization Artificial intelligence Psychology business computer Natural language processing

Keywords

ARBITRARINESS, Linguistics and Language, lexical categories, SOUND-SHAPE CORRESPONDENCES, Experimental and Cognitive Psychology, phonological bootstrapping, Language and Linguistics, Discrimination Learning, AGE, Phonetics, CATEGORIZATION, Psychology, Humans, Psycholinguistics, linear discriminative learning, ACQUISITION, SYMBOLISM, BIASES, Models, Theoretical, Semantics, SIMILARITY, nonwords

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Funded by
EC| WIDE
Project
WIDE
Wide Incremental learning with Discrimination nEtworks
  • Funder: European Commission (EC)
  • Project Code: 742545
  • Funding stream: H2020 | ERC | ERC-ADG
Validated by funder
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.