• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 5 versions
Publication . Preprint . Article . 2021

Identification of model uncertainty via optimal design of experiments applied to a mechanical press

Tristan Gally; Peter Groche; Florian Hoppe; Anja Kuttich; Alexander Matei; Marc E. Pfetsch; Martin Rakowitsch; +1 Authors
Open Access
Published: 01 Jan 2021 Journal: Optimization and Engineering, volume 23, pages 579-606 (issn: 1389-4420, eissn: 1573-2924, Copyright policy )
Publisher: Springer Science and Business Media LLC
Country: Germany
Published by Springer Science + Business Media B.V, Dordrecht [u.a.]
Optimization and engineering (2021). doi:10.1007/s11081-021-09600-8
Subjects by Vocabulary

Microsoft Academic Graph classification: Computation Condition monitoring Computer science Control theory Variance (accounting) Component (UML) Mathematical model Statistical hypothesis testing Servo drive

Dewey Decimal Classification: ddc:690


Electrical and Electronic Engineering, Control and Optimization, Mechanical Engineering, Aerospace Engineering, Civil and Structural Engineering, Software, Machine Learning (stat.ML), Machine Learning (cs.LG), Optimization and Control (math.OC), Applications (stat.AP), FOS: Computer and information sciences, FOS: Mathematics, 690, Statistics - Machine Learning, Computer Science - Machine Learning, Mathematics - Optimization and Control, Statistics - Applications

27 references, page 1 of 3

[1] P. D. Arendt, D. W. Apley, and W. Chen. Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. Journal of Mechanical Design, 134(10):100908, 2012.

[2] S. P. Asprey and S. Macchietto. Statistical tools for optimal dynamic model building. Computers & Chemical Engineering, 24(2-7):1261-1267, 2000.

[3] Y. Bard. Nonlinear parameter estimation. Academic press, New York, 1974.

[4] I. Bauer, H. G. Bock, S. Ko¨rkel, and J. P. Schlo¨der. Numerical methods for optimum experimental design in dae systems. Journal of Computational and Applied Mathematics, 120(1-2):1-25, 2000.

[5] G. Bertotti and I. D. Mayergoyz, editors. The science of hysteresis. Academic, Amsterdam and Boston, 1st ed. edition, 2006.

[6] J. Brynjarsdo´ttir and A. O'Hagan. Learning about physical parameters: The importance of model discrepancy. Inverse Problems, 30(114007):1-24, 2014.

[7] S. Burer and A. N. Letchford. Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science, 17(2), 2012. [OpenAIRE]

[8] J. J. E. Dennis, D. M. Gay, and R. E. Walsh. An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw., 7(3):348-368, 1981.

[9] H. Dresig and A. Fidlin. Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Springer, 3. auflage edition, 2014.

[10] V. V. Fedorov and S. L. Leonov. Optimal design for nonlinear response models. CRC Press, 2013.