<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract INCEFA-SCALE is a five-year project supported by the European Commission HORIZON2020 programme. It kicked off in September 2020 and is the successor to the INCEFA-PLUS programme. The objective is to continue work, advancing the ability to predict lifetimes of Nuclear Plant components when subjected to Environmental Assisted Fatigue (EAF) loading. The main issue addressed by INCEFA-SCALE is the transferability of laboratory-scale tests to real nuclear components. The project strategy will be (1) the development of comprehensive mechanistic understanding developed through detailed examination of test specimens and data mining, and (2) testing focussed on particular aspects of component-scale cyclic loading. From these data, one of the main objectives is to derive an EAF assessment procedure that can be used by assessors for the extrapolation of laboratory test data to real component geometries and conditions, for lifetime calculations. This paper will give an overview of the INCEFA-SCALE modelling plans and some illustrations on the 5 main topics that have been identified: (1) numerical analyses to support test design and interpretation, (2) data mining, (3) review of the codified methods, (4) fatigue damage modelling and non-codified approaches to better address for fatigue damage mechanisms, and (5) industrial application.
pressurized water reactor, environmentally assisted fatigue, data mining, stainless steel, finite element analyses
pressurized water reactor, environmentally assisted fatigue, data mining, stainless steel, finite element analyses
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::e1b42152867d24b5a81c554fca308999&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::e1b42152867d24b5a81c554fca308999&type=result"></script>');
-->
</script>
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |