Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Head & Face Medi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Head & Face Medicine
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Head & Face Medicine
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of deep learning models to detect crossbites on 2D intraoral photographs

Authors: Noeldeke, Beatrice; Vassis, Stratos; Sefidroodi, Mohammedreza; Pauwels, Ruben; Stoustrup, Peter;

Comparison of deep learning models to detect crossbites on 2D intraoral photographs

Abstract

To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% in the test dataset.Convolutional neural networks show high potential in processing clinical photographs and detecting crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of malocclusions based on intraoral 2D photographs.

Keywords

Male, Artificial intelligence, Orthodontic diagnosis, Adolescent, Research, Specialties of internal medicine, Deep learning, Orthodontic diagnosis ; Adolescent [MeSH] ; Female [MeSH] ; Malocclusion/diagnosis [MeSH] ; Deep Learning [MeSH] ; Humans [MeSH] ; Artificial intelligence ; Artificial Intelligence in Head ; Photography/methods [MeSH] ; Neural Networks, Computer [MeSH] ; Crossbite ; Malocclusion/diagnostic imaging [MeSH] ; Neural networks ; Male [MeSH] ; Research ; Photography, Dental/methods [MeSH] ; Deep learning, Deep Learning, RC581-951, Photography, Dental, Photography, Humans, Crossbite, Female, Neural Networks, Computer, Neural networks, Malocclusion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold