
Abstract We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on Gutmann’s well-established RBF method for minimising an expensive and deterministic objective function, which has become popular both from a theoretical and practical perspective. To construct suitable radial basis function approximants to the objective function and to determine new sample points for successive evaluation of the expensive noisy objective, the method uses a regularised least-squares criterion. In particular, new points are defined by means of a target value, analogous to the original RBF method. We provide essential convergence results, and provide a numerical illustration of the method by means of a simple test problem.
ddc:510, expensive noisy objective function, controlled noise, Full Length Paper, radial basis functions, Nonconvex programming, global optimization, response surface methods, 510, 004, Nonlinear programming, global optimisation, approximation
ddc:510, expensive noisy objective function, controlled noise, Full Length Paper, radial basis functions, Nonconvex programming, global optimization, response surface methods, 510, 004, Nonlinear programming, global optimisation, approximation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
