Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm

Authors: Agathocleous, Michalis; Christodoulou, Chris C.; Promponas, Vasilis J.; Kountouris, P.; Vassiliades, Vassilis; Agathocleous, Michalis; Christodoulou, Chris C.; +3 Authors

Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm

Abstract

Predictions on sequential data, when both the upstream and downstream information is important, is a difficult and challenging task. The Bidirectional Recurrent Neural Network (BRNN) architecture has been designed to deal with this class of problems. In this paper, we present the development and implementation of the Scaled Conjugate Gradient (SCG) learning algorithm for BRNN architectures. The model has been tested on the Protein Secondary Structure Prediction (PSSP) and Transmembrane Protein Topology Prediction problems (TMPTP). Our method currently achieves preliminary results close to 73 % correct predictions for the PSSP problem and close to 79 % for the TMPTP problem, which are expected to increase with larger datasets, external rules, ensemble methods and filtering techniques. Importantly, the SCG algorithm is training the BRNN architecture approximately 3 times faster than the Backpropagation Through Time (BPTT) algorithm.

Keywords

Artificial intelligence, Ensemble methods, Bioinformatics, Backpropagation through time algorithms, Learning algorithms, Conjugate gradient method, Topology, Filtering technique, Scaled conjugate gradient algorithm, Trans-membrane proteins, Computational intelligence, Scaled conjugate gradient, Backpropagation algorithms, Learning systems, Network architecture, Bidirectional recurrent neural networks, Proteins, Protein secondary structure prediction, Transmembrane protein topology prediction, Recurrent neural networks, Scaled conjugate gradients, Protein secondary-structure prediction, Neural networks, Forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!