
Conducting polymer (CP) thin films find widespread use, for example in bioelectronic, energy harvesting and storage, and drug delivery technology. Electrosynthesis at a polarisable liquid|liquid interface using an aqueous oxidant and organic soluble monomer provides a route to free-standing and scalable CP thin films, such as poly(3,4-ethylenedioxythiophene) (PEDOT), in a single step at ambient conditions. Here, using the potentiodynamic technique of cyclic voltammetry, interfacial electrosynthesis involving ion-exchange, electron transfer, and proton adsorption charge transfer processes is shown to be mechanistically distinct from CP electropolymerisation at a solid electrode|electrolyte interface. The applied interfacial Galvani potential difference controls the interfacial concentration of the oxidant, EDOT monomers and oligomers, but not the CP redox state. Nevertheless, typical CP electropolymerisation electrochemical behaviours, such as steady charge accumulation with each successive cycle and the appearance of a nucleation loop, were observed. By combining (spectro)electrochemical measurements and theoretical models, this work identifies the underlying mechanistic origin of each feature on the cyclic voltammograms (CVs) due to charge accumulated from Faradaic and capacitive processes as the PEDOT thin film grows. The experimental methodology and theoretical models outlined in this article provide a broadly generic framework to understand evolving CVs during interfacial electrosynthesis using any suitable oxidant/monomer combination.
física, Chemical sciences, FOS: Chemical sciences, conducting polymer (CP) thin films, bioelectronic
física, Chemical sciences, FOS: Chemical sciences, conducting polymer (CP) thin films, bioelectronic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
