Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DAD: A Distributed Anomaly Detection system using ensemble one-class statistical learning in edge networks

Authors: Moustafa, Nour; Hassan, Marwa; Choo, Kim-Kwang Raymond; Lynar, Timothy; Camtepe, Seyit; Whitty, Monica;

DAD: A Distributed Anomaly Detection system using ensemble one-class statistical learning in edge networks

Abstract

Abstract There are various data management and security tools deployed at the cloud for storing and analyzing big data generated by the Internet of Things (IoT) and Industrial IoT (IIoT) systems. There is a recent trend to move such tools to edge networks (closer to the users and the IoT/IIoT systems) to address limitations, especially latency and security issues, in cloud-based solutions. However, protecting edge networks against zero-day attacks is challenging, due to the volume, variety and veracity of data collected from the large numbers of IoT devices in edge networks. In this paper, we propose a Distributed Anomaly Detection (DAD) system to discover zero-day attacks in edge networks. The proposed system uses Gaussian Mixture-based Correntropy, a novel ensemble one-class statistical learning model, which is designed to effectively monitor and recognize zero-day attacks in real-time from edge networks. We also design an IoT-edge-cloud architecture to illustrate the complexity of edge networks and how one can deploy the proposed system at network gateways. The proposed system is evaluated using both NSL-KDD and UNSW-NB15 datasets. The findings reveal that the proposed system achieves better performance, in terms of detection accuracy and processing time, compared with five anomaly detection techniques.

Keywords

anzsrc-for: 0805 Distributed Computing, anzsrc-for: 4605 Data Management and Data Science, anzsrc-for: 46 Information and Computing Sciences, anzsrc-for: 0803 Computer Software, anzsrc-for: 0806 Information Systems, 004, 4605 Data Management and Data Science, Innovation and Infrastructure, 4606 Distributed Computing and Systems Software, 46 Information and Computing Sciences, Networking and Information Technology R&D (NITRD), anzsrc-for: 4604 Cybersecurity and Privacy, 4604 Cybersecurity and Privacy, anzsrc-for: 4609 Information systems, Generic health relevance, 9 Industry, anzsrc-for: 4606 Distributed Computing and Systems Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 1%
Green