Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of Ural Fed...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intelligent Computer System of Decision Support for Optimizing the Control of Investment Analysis Processes and Projecting

Authors: Shorikov, A. F.; Butsenko, E. V.; Tyulyukin, V. A.;

Intelligent Computer System of Decision Support for Optimizing the Control of Investment Analysis Processes and Projecting

Abstract

Для успешной деятельности любого хозяйствующего субъекта в области инвестиционного проектирования необходимо иметь современный инструментарий управления его процессами. В статье обсуждаются вопросы разработки и создания интеллектуальной компьютерной системы поддержки принятия решений, позволяющей оптимизировать управление процессами инвестиционного анализа и проектирования. Целью данной работы является разработка и создание системы поддержки принятия решений для оптимизации управления процессами инвестиционного анализа и проектирования на основе анализа возможных направлений использования интеллектуальных систем. Разработка и создание такой системы основывается на технологиях компьютерных экспертных систем поддержки принятия решений, нейронных сетей, машинного обучения, а также моделях и методах сетевого экономико-математического моделирования. В работе рассмотрены основные этапы создания компьютерной экспертной системы для оптимизации управления процессами инвестиционного анализа и проектирования хозяйствующим субъектом. Приведены конкретные примеры разработки логических правил в продукционной и клаузальной формах для базы знаний предлагаемой компьютерной экспертной системы. В работе выполнен анализ целесообразности выбора конкретных моделей и технологий, подходящих для создания предлагаемой интеллектуальной системы. Представлены результаты, свидетельствующие об эффективности ее применения в практической деятельности хозяйствующих субъектов при оптимизации управления процессами инвестиционного анализа и проектирования. Дальнейшие направления развития данной темы могут быть направлены на применение различных архитектур нейронных сетей для решения многих практических задач инвестиционного анализа и проектирования, а также на использование больших объемов экономической информации, пригодной для нейросетевой обработки.

For the successful operation of any business entity in the field of investment projecting, it is necessary to have a modern control tool for its processes. The article discusses the issues of development and creation of an intelligent computer system for decision support that allows one to optimize the control of investment analysis and projecting processes. The purpose of this work is to develop and create a decision support system for optimizing the control of investment analysis and projecting processes based on analysis of possible areas of use of intelligent systems. The development and creation of such a system is based on the technologies of computer expert decision support systems, neural networks, machine learning, as well as models and methods of network economic and mathematical modeling. In the paper, the basic stages of the creation of computer expert systems for optimization of control by processes of the investment analysis and projecting by the organization are considered. Specific examples of the development of logical rules in the production and clausal forms for the knowledge base of the proposed computer expert system are given. The work analyzes the feasibility of selecting specific models and technologies suitable for creating the proposed intellectual system. The presented results testify to the effectiveness of its application in the practical activities of economic entities when optimizing the control of investment analysis and projecting processes. This topic can be further developed in the directions of the application of various architectures of neural networks to solve many practical problems of investment analysis and projecting, as well as the use of large amounts of economic information suitable for neural network processing.

Работа выполнена при финансовой поддержке РФФИ (проект № 17-01-00315)

Keywords

КЛАУЗАЛЬНАЯ ФОРМА, INTELLECTUAL SYSTEMS, СЕТЕВЫЕ МОДЕЛИ И МЕТОДЫ, INVESTMENT PROJECTING, CLAUSAL FORM, ИНВЕСТИЦИОННОЕ ПРОЕКТИРОВАНИЕ, PRODUCTION RULES, КОМПЬЮТЕРНЫЕ ЭКСПЕРТНЫЕ СИСТЕМЫ, COMPUTER EXPERT SYSTEMS, ПРОДУКЦИОННЫЕ ПРАВИЛА, ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ, NETWORK MODELS AND METHODS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold