Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2024
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina

Authors: Marine Bugnon; Ute F Röhrig; Mathilde Goullieux; Marta A S Perez; Antoine Daina; Olivier Michielin; Vincent Zoete;

SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina

Abstract

Abstract Drug discovery aims to identify potential therapeutic compounds capable of modulating the activity of specific biological targets. Molecular docking can efficiently support this process by predicting binding interactions between small molecules and macromolecular targets and potentially accelerating screening campaigns. SwissDock is a computational tool released in 2011 as part of the SwissDrugDesign project, providing a free web-based service for small-molecule docking after automatized preparation of ligands and targets. Here, we present the latest version of SwissDock, in which EADock DSS has been replaced by two state-of-the-art docking programs, i.e. Attracting Cavities and AutoDock Vina. AutoDock Vina provides faster docking predictions, while Attracting Cavities offers more accurate results. Ligands can be imported in various ways, including as files, SMILES notation or molecular sketches. Targets can be imported as PDB files or identified by their PDB ID. In addition, advanced search options are available both for ligands and targets, giving users automatized access to widely-used databases. The web interface has been completely redesigned for interactive submission and analysis of docking results. Moreover, we developed a user-friendly command-line access which, in addition to all options of the web site, also enables covalent ligand docking with Attracting Cavities. The new version of SwissDock is freely available at https://www.swissdock.ch/.

Keywords

Molecular Docking Simulation; Ligands; Software; Drug Discovery/methods; User-Computer Interface; Internet; Proteins/chemistry; Proteins/metabolism; Small Molecule Libraries/chemistry; Small Molecule Libraries/pharmacology; Protein Binding; Binding Sites, Internet, Binding Sites, Proteins, Ligands, Molecular Docking Simulation, Small Molecule Libraries, User-Computer Interface, Web Server Issue, Drug Discovery, Software, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    206
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
206
Top 0.1%
Top 10%
Top 0.1%
Green
gold