
La demande de solutions énergétiques propres et durables augmente à mesure que la population mondiale augmente et que les économies se développent. Les combustibles fossiles, qui dominent actuellement le secteur de l'énergie, contribuent aux émissions de gaz à effet de serre et à la dégradation de l'environnement. En réponse à ces défis, les technologies de stockage de l'hydrogène sont apparues comme une voie prometteuse pour atteindre la durabilité énergétique. Cette revue donne un aperçu des progrès récents dans les matériaux et les technologies de stockage de l'hydrogène, en soulignant l'importance d'un stockage efficace pour maximiser le potentiel de l'hydrogène. L'examen met en évidence des méthodes de stockage physique telles que l'hydrogène comprimé (atteignant des pressions allant jusqu'à 70 MPa) et des approches basées sur les matériaux utilisant des hydrures métalliques et des substances contenant du carbone. Il explore également les considérations de conception, la chimie computationnelle, le criblage à haut débit et les techniques d'apprentissage automatique utilisées dans le développement de matériaux de stockage d'hydrogène efficaces. Cette analyse complète met en évidence le potentiel du stockage de l'hydrogène pour répondre à la demande énergétique, réduire les émissions de gaz à effet de serre et stimuler l'innovation en matière d'énergie propre.
La demanda de soluciones energéticas limpias y sostenibles está aumentando a medida que crece la población mundial y se desarrollan las economías. Los combustibles fósiles, que actualmente dominan el sector energético, contribuyen a las emisiones de gases de efecto invernadero y a la degradación ambiental. En respuesta a estos desafíos, las tecnologías de almacenamiento de hidrógeno se han convertido en una vía prometedora para lograr la sostenibilidad energética. Esta revisión proporciona una visión general de los avances recientes en materiales y tecnologías de almacenamiento de hidrógeno, enfatizando la importancia del almacenamiento eficiente para maximizar el potencial del hidrógeno. La revisión destaca los métodos de almacenamiento físico, como el hidrógeno comprimido (que alcanza presiones de hasta 70 MPa) y los enfoques basados en materiales que utilizan hidruros metálicos y sustancias que contienen carbono. También explora las consideraciones de diseño, la química computacional, el cribado de alto rendimiento y las técnicas de aprendizaje automático empleadas en el desarrollo de materiales eficientes de almacenamiento de hidrógeno. Este análisis exhaustivo muestra el potencial del almacenamiento de hidrógeno para abordar la demanda de energía, reducir las emisiones de gases de efecto invernadero e impulsar la innovación en energía limpia.
The demand for clean and sustainable energy solutions is escalating as the global population grows and economies develop. Fossil fuels, which currently dominate the energy sector, contribute to greenhouse gas emissions and environmental degradation. In response to these challenges, hydrogen storage technologies have emerged as a promising avenue for achieving energy sustainability. This review provides an overview of recent advancements in hydrogen storage materials and technologies, emphasizing the importance of efficient storage for maximizing hydrogen's potential. The review highlights physical storage methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-based approaches utilizing metal hydrides and carbon-containing substances. It also explores design considerations, computational chemistry, high-throughput screening, and machine-learning techniques employed in developing efficient hydrogen storage materials. This comprehensive analysis showcases the potential of hydrogen storage in addressing energy demands, reducing greenhouse gas emissions, and driving clean energy innovation.
يتصاعد الطلب على حلول الطاقة النظيفة والمستدامة مع نمو سكان العالم وتطور الاقتصادات. يساهم الوقود الأحفوري، الذي يهيمن حاليًا على قطاع الطاقة، في انبعاثات غازات الدفيئة والتدهور البيئي. واستجابة لهذه التحديات، برزت تقنيات تخزين الهيدروجين كوسيلة واعدة لتحقيق استدامة الطاقة. تقدم هذه المراجعة لمحة عامة عن التطورات الأخيرة في مواد وتقنيات تخزين الهيدروجين، مع التأكيد على أهمية التخزين الفعال لتعظيم إمكانات الهيدروجين. تسلط المراجعة الضوء على طرق التخزين المادية مثل الهيدروجين المضغوط (الذي يصل إلى ضغوط تصل إلى 70 ميجا باسكال) والنهج القائمة على المواد التي تستخدم هيدريدات المعادن والمواد المحتوية على الكربون. كما يستكشف اعتبارات التصميم والكيمياء الحاسوبية والفحص عالي الإنتاجية وتقنيات التعلم الآلي المستخدمة في تطوير مواد تخزين الهيدروجين الفعالة. يعرض هذا التحليل الشامل إمكانات تخزين الهيدروجين في تلبية متطلبات الطاقة، والحد من انبعاثات غازات الدفيئة، ودفع الابتكار في مجال الطاقة النظيفة.
Computational chemistry, Energy storage, name=Fuel Technology, name=SDG 7 - Affordable and Clean Energy, Organic chemistry, /dk/atira/pure/subjectarea/asjc/2100/2105; name=Renewable Energy, Sustainability and the Environment, Engineering, Materials Chemistry, Nanotechnology, Computer data storage, Energy, Porous Crystalline Organic Frameworks for Energy and Separation Applications, Physics, /dk/atira/pure/subjectarea/asjc/2100/2103; name=Fuel Technology, High-throughput screening, 600, Power (physics), Chemistry, Materials and Methods for Hydrogen Storage, Compressed hydrogen, Physical Sciences, Thermodynamics, /dk/atira/pure/subjectarea/asjc/2100/2102; name=Energy Engineering and Power Technology, /dk/atira/pure/subjectarea/asjc/2100/2105, name=Energy Engineering and Power Technology, Materials Science, Energy Engineering and Power Technology, Liquified hydrogen, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, name=Renewable Energy, Machine learning, /dk/atira/pure/subjectarea/asjc/2100/2103, /dk/atira/pure/subjectarea/asjc/2100/2102, FOS: Nanotechnology, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, Sustainability and the Environment, /dk/atira/pure/subjectarea/asjc/3100/3104, Hydrogen storage, 540, Hydrogen Energy Systems and Technologies, Computer science, Materials science, /dk/atira/pure/subjectarea/asjc/3100/3104; name=Condensed Matter Physics, Hydrogen fuel, Operating system, name=Condensed Matter Physics, Process engineering, Hydrogen
Computational chemistry, Energy storage, name=Fuel Technology, name=SDG 7 - Affordable and Clean Energy, Organic chemistry, /dk/atira/pure/subjectarea/asjc/2100/2105; name=Renewable Energy, Sustainability and the Environment, Engineering, Materials Chemistry, Nanotechnology, Computer data storage, Energy, Porous Crystalline Organic Frameworks for Energy and Separation Applications, Physics, /dk/atira/pure/subjectarea/asjc/2100/2103; name=Fuel Technology, High-throughput screening, 600, Power (physics), Chemistry, Materials and Methods for Hydrogen Storage, Compressed hydrogen, Physical Sciences, Thermodynamics, /dk/atira/pure/subjectarea/asjc/2100/2102; name=Energy Engineering and Power Technology, /dk/atira/pure/subjectarea/asjc/2100/2105, name=Energy Engineering and Power Technology, Materials Science, Energy Engineering and Power Technology, Liquified hydrogen, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, name=Renewable Energy, Machine learning, /dk/atira/pure/subjectarea/asjc/2100/2103, /dk/atira/pure/subjectarea/asjc/2100/2102, FOS: Nanotechnology, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, Sustainability and the Environment, /dk/atira/pure/subjectarea/asjc/3100/3104, Hydrogen storage, 540, Hydrogen Energy Systems and Technologies, Computer science, Materials science, /dk/atira/pure/subjectarea/asjc/3100/3104; name=Condensed Matter Physics, Hydrogen fuel, Operating system, name=Condensed Matter Physics, Process engineering, Hydrogen
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 114 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
