Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fracture and Structu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fracture and Structural Integrity
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fracture and Structural Integrity
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/yx...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/5q...
Other literature type . 2022
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acoustic Analysis Using Symmetrised Implicit Midpoint Rule

التحليل الصوتي باستخدام قاعدة نقطة المنتصف الضمنية المتماثلة
Authors: Noorhelyna Razali; Nisa Balqis Masnoor; Shahrum Abdullah; Muhammad Faiz Hilmi Mohd Zainaphi;

Acoustic Analysis Using Symmetrised Implicit Midpoint Rule

Abstract

In wave propagation phenomena, time-advancing numerical methods must accurately represent the amplitude and phase of the propagating waves. The acoustic waves are non-dispersive and non-dissipative. However, the standard schemes both retain dissipation and dispersion errors. Thus, this paper aims to analyse the dissipation, dispersion, accuracy, and stability of the Runge–Kutta method and derive a new scheme and algorithm that preserves the symmetry property. The symmetrised method is introduced in the time-of-finite-difference method for solving problems in aeroacoustics. More efficient programming for solving acoustic problems in time and space, i.e. the IMR method for solving acoustic problems, an advection equation, compares the square-wave and step-wave Lax methods with symmetrised IMR (one-and two-step active). The results of conventional methods are usually unstable for hyperbolic problems. The forward time central space square equation is an unstable method with minimal usefulness, which can only study waves for short fractions of one oscillation period. Therefore, nonlinear instability and shock formation are controlled by numerical viscosities such as those discussed with the Lax method equation. The one- and two-step active symmetrised IMR methods are more efficient than the wave method.

Keywords

imr, Dissipative system, Runge-Kutta Method, TA630-695, symmetrisation, Runge-Kutta Methods, Numerical Method, Mathematical analysis, Quantum mechanics, Symmetrisation, Engineering, Numerical Integration Methods for Differential Equations, runge�kutta method, TJ1-1570, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, computational acoustics, Mechanical engineering and machinery, Electrical and Electronic Engineering, IMR, Numerical Analysis, Acoustic wave, Structural engineering (General), Physics, numerical method, Acoustic wave equation, Acoustics, Atomic and Molecular Physics, and Optics, Physics and Astronomy, Dissipation, Physical Sciences, Nonlinear system, Finite-Difference Time-Domain Methods in Electromagnetics, Thermodynamics, Electromagnetic Scattering with Integral Equations, Dispersion Analysis, Time-Stepping Schemes, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Published in a Diamond OA journal