Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tropical Cyclone Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tropical Cyclone Research and Review
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Can one reconcile the classical theories and the WISHE theories of tropical cyclone intensification?

Authors: Roger K. Smith; Michael T. Montgomery; Shanghong Wang;

Can one reconcile the classical theories and the WISHE theories of tropical cyclone intensification?

Abstract

An effort is made to reconcile the classical balance theories of tropical cyclone intensification by Shapiro and Willoughby and Schubert and Hack and the various prognostic (or WISHE-) theories of Emanuel. As a start, it proves insightful to extend the classical theories to account for explicit latent heat release in slantwise ascending air. While such an effort uncovers enroute a range of old modelling issues concerning the representation of deep convection in a balance framework, the analysis provides a new perspective on these issues. The bottom line is that the two theories cannot be reconciled.The behaviour of the classical model with explicit latent heat release included is illustrated by a particular calculation starting with an axisymmetric vortex in a conditionally-unstable atmosphere. As soon as condensation occurs aloft, the moist Eliassen equation for the overturning circulation becomes hyperbolic in the convectively-unstable region and the model cannot be advanced forwards beyond this time unless the Eliassen equation is suitably regularized to remove these hyperbolic regions. However, regularization suppresses deep moist convection, leaving no mechanism to reverse the frictionally-induced outflow in the lower troposphere required to concentrate absolute angular momentum there. For this reason, the initial vortex spins down, even following the formation of elevated cloud with the accompanying latent heat release.The fact that the flow configuration in the explicit moist version of the classical theories is similar to that in the WISHE theories raises several fundamental questions concerning the physics of vortex spin up in the WISHE theories, calling into question the utility of these theories for understanding tropical cyclone intensification in nature.

Keywords

Tropical cyclone, Environmental sciences, WISHE intensification theories, Physical geography, Classical intensification theories, Hurricane, GE1-350, Typhoon, Eliassen equation, GB3-5030

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold