Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ghent University Aca...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Visualization and Computer Graphics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

VisCARS: Knowledge Graph-Based Context-Aware Recommender System for Time-Series Data Visualization and Monitoring Dashboards

Authors: Pieter Moens; Bruno Volckaert; Sofie Van Hoecke;

VisCARS: Knowledge Graph-Based Context-Aware Recommender System for Time-Series Data Visualization and Monitoring Dashboards

Abstract

Data visualization recommendation aims to assist the user in creating visualizations from a given dataset. The process of creating appropriate visualizations requires expert knowledge of the available data model as well as the dashboard application that is used. To relieve the user from requiring this knowledge and from the manual process of creating numerous visualizations or dashboards, we present a context-aware visualization recommender system (VisCARS) for monitoring applications that automatically recommends a personalized dashboard to the user, based on the system they are monitoring and the task they are trying to achieve. Through a knowledge graph-based approach, expert knowledge about the data and the application is included as contextual features to improve the recommendation process. A dashboard ontology is presented that describes key components in a dashboard ecosystem in order to semantically annotate all the knowledge in the graph. The recommender system leverages knowledge graph embedding and comparison techniques in combination with a context-aware collaborative filtering approach to derive recommendations based on the context, i.e., the state of the monitored system, and the end-user preferences. The proposed methodology is implemented and integrated in a dynamic dashboard solution. The resulting recommender system is evaluated on a smart healthcare use-case through a quantitative performance and scalability analysis as well as a qualitative user study. The results highlight the performance of the proposed solution compared to the state-of-the-art and its potential for time-critical monitoring applications.

Related Organizations
Keywords

Metadata, Technology and Engineering, multiple-view visualization, visualization recommendation, Monitoring, knowledge graph, Data visualization, Task analysis, Medical services, Knowledge graphs, Recommender systems, dynamic dashboard, ontology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average