Downloads provided by UsageCounts
handle: 2117/363432
The problem of dealing with misreported data is very common in a wide range of contexts and for different reasons. This has been and still is an important issue for data analysts and statisticians as not accounting for it could led to biased estimates and conclusions, and in many cases that would have implications in a posterior decision making process, as we all have seen in the current worldwide Covid-19 pandemic. In the last few years, many approaches have been proposed in the literature to accomodate data presenting this issue, especially in the fields of epidemiology and public health but also in other areas as social science. In this work, a comprehensive review of the recently proposed methods based on mixture models for longitudinal data (correlated and uncorrelated) is presented and several examples of application are discussed, including several approaches to the burden of Covid-19 infection cases in Spain and different approaches to deal with underreported registries of human papillomavirus infections and genital warts in Catalunya
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística aplicada::Estadística biosanitària, :46 Associative rings and algebras::46N Miscellaneous applications of functional analysis [Classificació AMS], Public health, :Matemàtiques i estadística::Estadística aplicada::Estadística biosanitària [Àrees temàtiques de la UPC], Epidemiology, Longitudinal data, :92 Biology and other natural sciences::92D Genetics and population dynamics [Classificació AMS], :62 Statistics::62P Applications [Classificació AMS], Epidemiologia -- Models matemàtics, Modelling, Classificació AMS::62 Statistics::62P Applications, Classificació AMS::46 Associative rings and algebras::46N Miscellaneous applications of functional analysis, Misreported data, Classificació AMS::92 Biology and other natural sciences::92D Genetics and population dynamics, Epidemiology -- Mathematical models, Classificació AMS::37 Dynamical systems and ergodic theory::37M Approximation methods and numerical treatment of dynamical systems, :37 Dynamical systems and ergodic theory::37M Approximation methods and numerical treatment of dynamical systems [Classificació AMS]
Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística aplicada::Estadística biosanitària, :46 Associative rings and algebras::46N Miscellaneous applications of functional analysis [Classificació AMS], Public health, :Matemàtiques i estadística::Estadística aplicada::Estadística biosanitària [Àrees temàtiques de la UPC], Epidemiology, Longitudinal data, :92 Biology and other natural sciences::92D Genetics and population dynamics [Classificació AMS], :62 Statistics::62P Applications [Classificació AMS], Epidemiologia -- Models matemàtics, Modelling, Classificació AMS::62 Statistics::62P Applications, Classificació AMS::46 Associative rings and algebras::46N Miscellaneous applications of functional analysis, Misreported data, Classificació AMS::92 Biology and other natural sciences::92D Genetics and population dynamics, Epidemiology -- Mathematical models, Classificació AMS::37 Dynamical systems and ergodic theory::37M Approximation methods and numerical treatment of dynamical systems, :37 Dynamical systems and ergodic theory::37M Approximation methods and numerical treatment of dynamical systems [Classificació AMS]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 53 | |
| downloads | 43 |

Views provided by UsageCounts
Downloads provided by UsageCounts